Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1190 Structured version   Visualization version   Unicode version

Theorem bnj1190 31076
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1190.1  |-  ( ph  <->  ( R  FrSe  A  /\  B  C_  A  /\  B  =/=  (/) ) )
bnj1190.2  |-  ( ps  <->  ( x  e.  B  /\  y  e.  B  /\  y R x ) )
Assertion
Ref Expression
bnj1190  |-  ( (
ph  /\  ps )  ->  E. w  e.  B  A. z  e.  B  -.  z R w )
Distinct variable groups:    w, B, x, z    y, B, x, z    w, R, x, z    y, R
Allowed substitution hints:    ph( x, y, z, w)    ps( x, y, z, w)    A( x, y, z, w)

Proof of Theorem bnj1190
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1190.1 . . . . . . 7  |-  ( ph  <->  ( R  FrSe  A  /\  B  C_  A  /\  B  =/=  (/) ) )
21simp2bi 1077 . . . . . 6  |-  ( ph  ->  B  C_  A )
32adantr 481 . . . . 5  |-  ( (
ph  /\  ps )  ->  B  C_  A )
4 eqid 2622 . . . . . 6  |-  (  trCl ( x ,  A ,  R )  i^i  B
)  =  (  trCl ( x ,  A ,  R )  i^i  B
)
5 bnj1190.2 . . . . . . . . 9  |-  ( ps  <->  ( x  e.  B  /\  y  e.  B  /\  y R x ) )
61simp1bi 1076 . . . . . . . . . 10  |-  ( ph  ->  R  FrSe  A )
76adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  R  FrSe  A )
85simp1bi 1076 . . . . . . . . . 10  |-  ( ps 
->  x  e.  B
)
9 ssel2 3598 . . . . . . . . . 10  |-  ( ( B  C_  A  /\  x  e.  B )  ->  x  e.  A )
102, 8, 9syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  x  e.  A )
115, 4, 7, 3, 10bnj1177 31074 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( R  Fr  A  /\  (  trCl ( x ,  A ,  R
)  i^i  B )  C_  A  /\  (  trCl ( x ,  A ,  R )  i^i  B
)  =/=  (/)  /\  (  trCl ( x ,  A ,  R )  i^i  B
)  e.  _V )
)
12 bnj1154 31067 . . . . . . . 8  |-  ( ( R  Fr  A  /\  (  trCl ( x ,  A ,  R )  i^i  B )  C_  A  /\  (  trCl (
x ,  A ,  R )  i^i  B
)  =/=  (/)  /\  (  trCl ( x ,  A ,  R )  i^i  B
)  e.  _V )  ->  E. u  e.  ( 
trCl ( x ,  A ,  R )  i^i  B ) A. v  e.  (  trCl ( x ,  A ,  R )  i^i  B
)  -.  v R u )
1311, 12bnj1176 31073 . . . . . . 7  |-  E. u A. v ( ( ph  /\ 
ps )  ->  (
u  e.  (  trCl ( x ,  A ,  R )  i^i  B
)  /\  ( (
( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  v  e.  A
)  ->  ( v R u  ->  -.  v  e.  (  trCl ( x ,  A ,  R
)  i^i  B )
) ) ) )
14 biid 251 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  ( v  e.  A  /\  v R u ) )  <->  ( ( R 
FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R 
FrSe  A  /\  u  e.  A )  /\  (
v  e.  A  /\  v R u ) ) )
15 biid 251 . . . . . . . 8  |-  ( ( ( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  v  e.  A
)  <->  ( ( R 
FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R 
FrSe  A  /\  u  e.  A )  /\  v  e.  A ) )
164, 14, 15bnj1175 31072 . . . . . . 7  |-  ( ( ( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  v  e.  A
)  ->  ( v R u  ->  v  e. 
trCl ( x ,  A ,  R ) ) )
174, 13, 16bnj1174 31071 . . . . . 6  |-  E. u A. v ( ( ph  /\ 
ps )  ->  (
( ph  /\  ps  /\  u  e.  (  trCl ( x ,  A ,  R )  i^i  B
) )  /\  (
( ( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  v  e.  A
)  ->  ( v R u  ->  -.  v  e.  B ) ) ) )
184, 15, 7, 10bnj1173 31070 . . . . . 6  |-  ( (
ph  /\  ps  /\  u  e.  (  trCl ( x ,  A ,  R
)  i^i  B )
)  ->  ( (
( R  FrSe  A  /\  x  e.  A  /\  u  e.  trCl ( x ,  A ,  R ) )  /\  ( R  FrSe  A  /\  u  e.  A )  /\  v  e.  A
)  <->  v  e.  A
) )
194, 17, 18bnj1172 31069 . . . . 5  |-  E. u A. v ( ( ph  /\ 
ps )  ->  (
u  e.  B  /\  ( v  e.  A  ->  ( v R u  ->  -.  v  e.  B ) ) ) )
203, 19bnj1171 31068 . . . 4  |-  E. u A. v ( ( ph  /\ 
ps )  ->  (
u  e.  B  /\  ( v  e.  B  ->  -.  v R u ) ) )
2120bnj1186 31075 . . 3  |-  ( (
ph  /\  ps )  ->  E. u  e.  B  A. v  e.  B  -.  v R u )
2221bnj1185 30864 . 2  |-  ( (
ph  /\  ps )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
2322bnj1185 30864 1  |-  ( (
ph  /\  ps )  ->  E. w  e.  B  A. z  e.  B  -.  z R w )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    FrSe w-bnj15 30758    trClc-bnj18 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759  df-bnj18 30761  df-bnj19 30763
This theorem is referenced by:  bnj1189  31077
  Copyright terms: Public domain W3C validator