MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfdm Structured version   Visualization version   GIF version

Theorem cantnfdm 8561
Description: The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnfdm (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔
Allowed substitution hints:   𝜑(𝑔)   𝑆(𝑔)

Proof of Theorem cantnfdm
Dummy variables 𝑓 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.s . . . 4 𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnffval.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnffval.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 8560 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
54dmeqd 5326 . 2 (𝜑 → dom (𝐴 CNF 𝐵) = dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
6 fvex 6201 . . . . 5 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
76csbex 4793 . . . 4 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
87rgenw 2924 . . 3 𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
9 dmmptg 5632 . . 3 (∀𝑓𝑆 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V → dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = 𝑆)
108, 9ax-mp 5 . 2 dom (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = 𝑆
115, 10syl6eq 2672 1 (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  csb 3533  c0 3915   class class class wbr 4653  cmpt 4729   E cep 5028  dom cdm 5114  Oncon0 5723  cfv 5888  (class class class)co 6650  cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  𝑚 cmap 7857   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-cnf 8559
This theorem is referenced by:  cantnfs  8563  cantnfval  8565  cantnff  8571  oemapso  8579  wemapwe  8594  oef1o  8595
  Copyright terms: Public domain W3C validator