MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oef1o Structured version   Visualization version   GIF version

Theorem oef1o 8595
Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 6557.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
oef1o.f (𝜑𝐹:𝐴1-1-onto𝐶)
oef1o.g (𝜑𝐺:𝐵1-1-onto𝐷)
oef1o.a (𝜑𝐴 ∈ (On ∖ 1𝑜))
oef1o.b (𝜑𝐵 ∈ On)
oef1o.c (𝜑𝐶 ∈ On)
oef1o.d (𝜑𝐷 ∈ On)
oef1o.z (𝜑 → (𝐹‘∅) = ∅)
oef1o.k 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
oef1o.h 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
Assertion
Ref Expression
oef1o (𝜑𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem oef1o
StepHypRef Expression
1 eqid 2622 . . . . 5 dom (𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷)
2 oef1o.c . . . . 5 (𝜑𝐶 ∈ On)
3 oef1o.d . . . . 5 (𝜑𝐷 ∈ On)
41, 2, 3cantnff1o 8593 . . . 4 (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶𝑜 𝐷))
5 eqid 2622 . . . . . . . 8 {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}
6 eqid 2622 . . . . . . . 8 {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}
7 eqid 2622 . . . . . . . 8 (𝐹‘∅) = (𝐹‘∅)
8 oef1o.g . . . . . . . . 9 (𝜑𝐺:𝐵1-1-onto𝐷)
9 f1ocnv 6149 . . . . . . . . 9 (𝐺:𝐵1-1-onto𝐷𝐺:𝐷1-1-onto𝐵)
108, 9syl 17 . . . . . . . 8 (𝜑𝐺:𝐷1-1-onto𝐵)
11 oef1o.f . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto𝐶)
12 ssv 3625 . . . . . . . . 9 On ⊆ V
13 oef1o.b . . . . . . . . 9 (𝜑𝐵 ∈ On)
1412, 13sseldi 3601 . . . . . . . 8 (𝜑𝐵 ∈ V)
15 oef1o.a . . . . . . . . . 10 (𝜑𝐴 ∈ (On ∖ 1𝑜))
1615eldifad 3586 . . . . . . . . 9 (𝜑𝐴 ∈ On)
1712, 16sseldi 3601 . . . . . . . 8 (𝜑𝐴 ∈ V)
1812, 3sseldi 3601 . . . . . . . 8 (𝜑𝐷 ∈ V)
1912, 2sseldi 3601 . . . . . . . 8 (𝜑𝐶 ∈ V)
20 ondif1 7581 . . . . . . . . . 10 (𝐴 ∈ (On ∖ 1𝑜) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
2120simprbi 480 . . . . . . . . 9 (𝐴 ∈ (On ∖ 1𝑜) → ∅ ∈ 𝐴)
2215, 21syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝐴)
235, 6, 7, 10, 11, 14, 17, 18, 19, 22mapfien 8313 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
24 oef1o.k . . . . . . . 8 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺)))
25 f1oeq1 6127 . . . . . . . 8 (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))) → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
2624, 25ax-mp 5 . . . . . . 7 (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦𝐺))):{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
2723, 26sylibr 224 . . . . . 6 (𝜑𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
28 eqid 2622 . . . . . . . . 9 {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅}
2928, 2, 3cantnfdm 8561 . . . . . . . 8 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅})
30 oef1o.z . . . . . . . . . 10 (𝜑 → (𝐹‘∅) = ∅)
3130breq2d 4665 . . . . . . . . 9 (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅))
3231rabbidv 3189 . . . . . . . 8 (𝜑 → {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp ∅})
3329, 32eqtr4d 2659 . . . . . . 7 (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})
34 f1oeq3 6129 . . . . . . 7 (dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
3533, 34syl 17 . . . . . 6 (𝜑 → (𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}))
3627, 35mpbird 247 . . . . 5 (𝜑𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷))
375, 16, 13cantnfdm 8561 . . . . . 6 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅})
38 f1oeq2 6128 . . . . . 6 (dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅} → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
3937, 38syl 17 . . . . 5 (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom (𝐶 CNF 𝐷)))
4036, 39mpbird 247 . . . 4 (𝜑𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷))
41 f1oco 6159 . . . 4 (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶𝑜 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom (𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
424, 40, 41syl2anc 693 . . 3 (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
43 eqid 2622 . . . . 5 dom (𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵)
4443, 16, 13cantnff1o 8593 . . . 4 (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴𝑜 𝐵))
45 f1ocnv 6149 . . . 4 ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴𝑜 𝐵) → (𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
4644, 45syl 17 . . 3 (𝜑(𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵))
47 f1oco 6159 . . 3 ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ∧ (𝐴 CNF 𝐵):(𝐴𝑜 𝐵)–1-1-onto→dom (𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
4842, 46, 47syl2anc 693 . 2 (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
49 oef1o.h . . 3 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵))
50 f1oeq1 6127 . . 3 (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)) → (𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷)))
5149, 50ax-mp 5 . 2 (𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ (𝐴 CNF 𝐵)):(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
5248, 51sylibr 224 1 (𝜑𝐻:(𝐴𝑜 𝐵)–1-1-onto→(𝐶𝑜 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cdif 3571  c0 3915   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  ccom 5118  Oncon0 5723  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑜 coe 7559  𝑚 cmap 7857   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-oexp 7566  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-cnf 8559
This theorem is referenced by:  infxpenc  8841
  Copyright terms: Public domain W3C validator