Proof of Theorem oef1o
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. . . . 5
⊢ dom
(𝐶 CNF 𝐷) = dom (𝐶 CNF 𝐷) |
| 2 | | oef1o.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ On) |
| 3 | | oef1o.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ On) |
| 4 | 1, 2, 3 | cantnff1o 8593 |
. . . 4
⊢ (𝜑 → (𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 5 | | eqid 2622 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} |
| 6 | | eqid 2622 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} |
| 7 | | eqid 2622 |
. . . . . . . 8
⊢ (𝐹‘∅) = (𝐹‘∅) |
| 8 | | oef1o.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) |
| 9 | | f1ocnv 6149 |
. . . . . . . . 9
⊢ (𝐺:𝐵–1-1-onto→𝐷 → ◡𝐺:𝐷–1-1-onto→𝐵) |
| 10 | 8, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ◡𝐺:𝐷–1-1-onto→𝐵) |
| 11 | | oef1o.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
| 12 | | ssv 3625 |
. . . . . . . . 9
⊢ On
⊆ V |
| 13 | | oef1o.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ On) |
| 14 | 12, 13 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ V) |
| 15 | | oef1o.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (On ∖
1𝑜)) |
| 16 | 15 | eldifad 3586 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ On) |
| 17 | 12, 16 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ V) |
| 18 | 12, 3 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ V) |
| 19 | 12, 2 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ V) |
| 20 | | ondif1 7581 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (On ∖
1𝑜) ↔ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) |
| 21 | 20 | simprbi 480 |
. . . . . . . . 9
⊢ (𝐴 ∈ (On ∖
1𝑜) → ∅ ∈ 𝐴) |
| 22 | 15, 21 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 23 | 5, 6, 7, 10, 11, 14, 17, 18, 19, 22 | mapfien 8313 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))):{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}) |
| 24 | | oef1o.k |
. . . . . . . 8
⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))) |
| 25 | | f1oeq1 6127 |
. . . . . . . 8
⊢ (𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))) → (𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))):{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})) |
| 26 | 24, 25 | ax-mp 5 |
. . . . . . 7
⊢ (𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} ↔ (𝑦 ∈ {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))):{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}) |
| 27 | 23, 26 | sylibr 224 |
. . . . . 6
⊢ (𝜑 → 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}) |
| 28 | | eqid 2622 |
. . . . . . . . 9
⊢ {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp ∅} |
| 29 | 28, 2, 3 | cantnfdm 8561 |
. . . . . . . 8
⊢ (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp ∅}) |
| 30 | | oef1o.z |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘∅) = ∅) |
| 31 | 30 | breq2d 4665 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 finSupp (𝐹‘∅) ↔ 𝑥 finSupp ∅)) |
| 32 | 31 | rabbidv 3189 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp ∅}) |
| 33 | 29, 32 | eqtr4d 2659 |
. . . . . . 7
⊢ (𝜑 → dom (𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)}) |
| 34 | | f1oeq3 6129 |
. . . . . . 7
⊢ (dom
(𝐶 CNF 𝐷) = {𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)} → (𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom
(𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom
(𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→{𝑥 ∈ (𝐶 ↑𝑚 𝐷) ∣ 𝑥 finSupp (𝐹‘∅)})) |
| 36 | 27, 35 | mpbird 247 |
. . . . 5
⊢ (𝜑 → 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom
(𝐶 CNF 𝐷)) |
| 37 | 5, 16, 13 | cantnfdm 8561 |
. . . . . 6
⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}) |
| 38 | | f1oeq2 6128 |
. . . . . 6
⊢ (dom
(𝐴 CNF 𝐵) = {𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅} → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom
(𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom
(𝐶 CNF 𝐷))) |
| 39 | 37, 38 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom
(𝐶 CNF 𝐷) ↔ 𝐾:{𝑥 ∈ (𝐴 ↑𝑚 𝐵) ∣ 𝑥 finSupp ∅}–1-1-onto→dom
(𝐶 CNF 𝐷))) |
| 40 | 36, 39 | mpbird 247 |
. . . 4
⊢ (𝜑 → 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom
(𝐶 CNF 𝐷)) |
| 41 | | f1oco 6159 |
. . . 4
⊢ (((𝐶 CNF 𝐷):dom (𝐶 CNF 𝐷)–1-1-onto→(𝐶 ↑𝑜 𝐷) ∧ 𝐾:dom (𝐴 CNF 𝐵)–1-1-onto→dom
(𝐶 CNF 𝐷)) → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 42 | 4, 40, 41 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 43 | | eqid 2622 |
. . . . 5
⊢ dom
(𝐴 CNF 𝐵) = dom (𝐴 CNF 𝐵) |
| 44 | 43, 16, 13 | cantnff1o 8593 |
. . . 4
⊢ (𝜑 → (𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴 ↑𝑜 𝐵)) |
| 45 | | f1ocnv 6149 |
. . . 4
⊢ ((𝐴 CNF 𝐵):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐴 ↑𝑜 𝐵) → ◡(𝐴 CNF 𝐵):(𝐴 ↑𝑜 𝐵)–1-1-onto→dom
(𝐴 CNF 𝐵)) |
| 46 | 44, 45 | syl 17 |
. . 3
⊢ (𝜑 → ◡(𝐴 CNF 𝐵):(𝐴 ↑𝑜 𝐵)–1-1-onto→dom
(𝐴 CNF 𝐵)) |
| 47 | | f1oco 6159 |
. . 3
⊢ ((((𝐶 CNF 𝐷) ∘ 𝐾):dom (𝐴 CNF 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷) ∧ ◡(𝐴 CNF 𝐵):(𝐴 ↑𝑜 𝐵)–1-1-onto→dom
(𝐴 CNF 𝐵)) → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)):(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 48 | 42, 46, 47 | syl2anc 693 |
. 2
⊢ (𝜑 → (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)):(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 49 | | oef1o.h |
. . 3
⊢ 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)) |
| 50 | | f1oeq1 6127 |
. . 3
⊢ (𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)) → (𝐻:(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)):(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷))) |
| 51 | 49, 50 | ax-mp 5 |
. 2
⊢ (𝐻:(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷) ↔ (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)):(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |
| 52 | 48, 51 | sylibr 224 |
1
⊢ (𝜑 → 𝐻:(𝐴 ↑𝑜 𝐵)–1-1-onto→(𝐶 ↑𝑜 𝐷)) |