MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfvalf Structured version   Visualization version   GIF version

Theorem cantnfvalf 8562
Description: Lemma for cantnf 8590. The function appearing in cantnfval 8565 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
cantnfvalf.f 𝐹 = seq𝜔((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)), ∅)
Assertion
Ref Expression
cantnfvalf 𝐹:ω⟶On
Distinct variable groups:   𝑧,𝑘,𝐴   𝐵,𝑘,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑘)   𝐷(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem cantnfvalf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfvalf.f . . 3 𝐹 = seq𝜔((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)), ∅)
21fnseqom 7550 . 2 𝐹 Fn ω
3 nn0suc 7090 . . . 4 (𝑥 ∈ ω → (𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦))
4 fveq2 6191 . . . . . . 7 (𝑥 = ∅ → (𝐹𝑥) = (𝐹‘∅))
5 0ex 4790 . . . . . . . 8 ∅ ∈ V
61seqom0g 7551 . . . . . . . 8 (∅ ∈ V → (𝐹‘∅) = ∅)
75, 6ax-mp 5 . . . . . . 7 (𝐹‘∅) = ∅
84, 7syl6eq 2672 . . . . . 6 (𝑥 = ∅ → (𝐹𝑥) = ∅)
9 0elon 5778 . . . . . 6 ∅ ∈ On
108, 9syl6eqel 2709 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) ∈ On)
111seqomsuc 7552 . . . . . . . . 9 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))(𝐹𝑦)))
12 df-ov 6653 . . . . . . . . 9 (𝑦(𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))(𝐹𝑦)) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩)
1311, 12syl6eq 2672 . . . . . . . 8 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩))
14 df-ov 6653 . . . . . . . . . . . 12 (𝐶 +𝑜 𝐷) = ( +𝑜 ‘⟨𝐶, 𝐷⟩)
15 fnoa 7588 . . . . . . . . . . . . . 14 +𝑜 Fn (On × On)
16 oacl 7615 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 +𝑜 𝑦) ∈ On)
1716rgen2a 2977 . . . . . . . . . . . . . 14 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +𝑜 𝑦) ∈ On
18 ffnov 6764 . . . . . . . . . . . . . 14 ( +𝑜 :(On × On)⟶On ↔ ( +𝑜 Fn (On × On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 +𝑜 𝑦) ∈ On))
1915, 17, 18mpbir2an 955 . . . . . . . . . . . . 13 +𝑜 :(On × On)⟶On
2019, 9f0cli 6370 . . . . . . . . . . . 12 ( +𝑜 ‘⟨𝐶, 𝐷⟩) ∈ On
2114, 20eqeltri 2697 . . . . . . . . . . 11 (𝐶 +𝑜 𝐷) ∈ On
2221rgen2w 2925 . . . . . . . . . 10 𝑘𝐴𝑧𝐵 (𝐶 +𝑜 𝐷) ∈ On
23 eqid 2622 . . . . . . . . . . 11 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)) = (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))
2423fmpt2 7237 . . . . . . . . . 10 (∀𝑘𝐴𝑧𝐵 (𝐶 +𝑜 𝐷) ∈ On ↔ (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)):(𝐴 × 𝐵)⟶On)
2522, 24mpbi 220 . . . . . . . . 9 (𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷)):(𝐴 × 𝐵)⟶On
2625, 9f0cli 6370 . . . . . . . 8 ((𝑘𝐴, 𝑧𝐵 ↦ (𝐶 +𝑜 𝐷))‘⟨𝑦, (𝐹𝑦)⟩) ∈ On
2713, 26syl6eqel 2709 . . . . . . 7 (𝑦 ∈ ω → (𝐹‘suc 𝑦) ∈ On)
28 fveq2 6191 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝐹𝑥) = (𝐹‘suc 𝑦))
2928eleq1d 2686 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝐹𝑥) ∈ On ↔ (𝐹‘suc 𝑦) ∈ On))
3027, 29syl5ibrcom 237 . . . . . 6 (𝑦 ∈ ω → (𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On))
3130rexlimiv 3027 . . . . 5 (∃𝑦 ∈ ω 𝑥 = suc 𝑦 → (𝐹𝑥) ∈ On)
3210, 31jaoi 394 . . . 4 ((𝑥 = ∅ ∨ ∃𝑦 ∈ ω 𝑥 = suc 𝑦) → (𝐹𝑥) ∈ On)
333, 32syl 17 . . 3 (𝑥 ∈ ω → (𝐹𝑥) ∈ On)
3433rgen 2922 . 2 𝑥 ∈ ω (𝐹𝑥) ∈ On
35 ffnfv 6388 . 2 (𝐹:ω⟶On ↔ (𝐹 Fn ω ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ On))
362, 34, 35mpbir2an 955 1 𝐹:ω⟶On
Colors of variables: wff setvar class
Syntax hints:  wo 383   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  c0 3915  cop 4183   × cxp 5112  Oncon0 5723  suc csuc 5725   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  seq𝜔cseqom 7542   +𝑜 coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-oadd 7564
This theorem is referenced by:  cantnfval2  8566  cantnfle  8568  cantnflt  8569  cantnflem1d  8585  cantnflem1  8586  cnfcomlem  8596
  Copyright terms: Public domain W3C validator