MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval Structured version   Visualization version   GIF version

Theorem cantnfval 8565
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
Assertion
Ref Expression
cantnfval (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 8560 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
54fveq1d 6193 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))‘𝐹))
6 cantnfcl.f . . . 4 (𝜑𝐹𝑆)
7 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
81, 2, 3cantnfdm 8561 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
97, 8syl5eq 2668 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
106, 9eleqtrd 2703 . . 3 (𝜑𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
11 ovex 6678 . . . . . 6 (𝑓 supp ∅) ∈ V
12 eqid 2622 . . . . . . 7 OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝑓 supp ∅))
1312oiexg 8440 . . . . . 6 ((𝑓 supp ∅) ∈ V → OrdIso( E , (𝑓 supp ∅)) ∈ V)
1411, 13mp1i 13 . . . . 5 (𝑓 = 𝐹 → OrdIso( E , (𝑓 supp ∅)) ∈ V)
15 simpr 477 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝑓 supp ∅)))
16 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑓 supp ∅) = (𝐹 supp ∅))
1716adantr 481 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓 supp ∅) = (𝐹 supp ∅))
18 oieq2 8418 . . . . . . . . . . . . . . . 16 ((𝑓 supp ∅) = (𝐹 supp ∅) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
2015, 19eqtrd 2656 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝐹 supp ∅)))
21 cantnfcl.g . . . . . . . . . . . . . 14 𝐺 = OrdIso( E , (𝐹 supp ∅))
2220, 21syl6eqr 2674 . . . . . . . . . . . . 13 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = 𝐺)
2322fveq1d 6193 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘) = (𝐺𝑘))
2423oveq2d 6666 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝐴𝑜 (𝑘)) = (𝐴𝑜 (𝐺𝑘)))
25 simpl 473 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → 𝑓 = 𝐹)
2625, 23fveq12d 6197 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓‘(𝑘)) = (𝐹‘(𝐺𝑘)))
2724, 26oveq12d 6668 . . . . . . . . . 10 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → ((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) = ((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))))
2827oveq1d 6665 . . . . . . . . 9 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧) = (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧))
2928mpt2eq3dv 6721 . . . . . . . 8 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)))
30 eqid 2622 . . . . . . . 8 ∅ = ∅
31 seqomeq12 7549 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅))
3229, 30, 31sylancl 694 . . . . . . 7 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅))
33 cantnfval.h . . . . . . 7 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝐺𝑘)) ·𝑜 (𝐹‘(𝐺𝑘))) +𝑜 𝑧)), ∅)
3432, 33syl6eqr 2674 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅) = 𝐻)
3522dmeqd 5326 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → dom = dom 𝐺)
3634, 35fveq12d 6197 . . . . 5 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
3714, 36csbied 3560 . . . 4 (𝑓 = 𝐹OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
38 eqid 2622 . . . 4 (𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))
39 fvex 6201 . . . 4 (𝐻‘dom 𝐺) ∈ V
4037, 38, 39fvmpt 6282 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} → ((𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
4110, 40syl 17 . 2 (𝜑 → ((𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
425, 41eqtrd 2656 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  csb 3533  c0 3915   class class class wbr 4653  cmpt 4729   E cep 5028  dom cdm 5114  Oncon0 5723  cfv 5888  (class class class)co 6650  cmpt2 6652   supp csupp 7295  seq𝜔cseqom 7542   +𝑜 coa 7557   ·𝑜 comu 7558  𝑜 coe 7559  𝑚 cmap 7857   finSupp cfsupp 8275  OrdIsocoi 8414   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-oi 8415  df-cnf 8559
This theorem is referenced by:  cantnfval2  8566  cantnfle  8568  cantnflt2  8570  cantnff  8571  cantnf0  8572  cantnfp1lem3  8577  cantnflem1  8586  cantnf  8590  cnfcom2  8599
  Copyright terms: Public domain W3C validator