MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardlim Structured version   Visualization version   Unicode version

Theorem cardlim 8798
Description: An infinite cardinal is a limit ordinal. Equivalent to Exercise 4 of [TakeutiZaring] p. 91. (Contributed by Mario Carneiro, 13-Jan-2013.)
Assertion
Ref Expression
cardlim  |-  ( om  C_  ( card `  A
)  <->  Lim  ( card `  A
) )

Proof of Theorem cardlim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . . . . . . . 11  |-  ( (
card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  <->  om  C_  suc  x ) )
21biimpd 219 . . . . . . . . . 10  |-  ( (
card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  ->  om  C_  suc  x ) )
3 limom 7080 . . . . . . . . . . . 12  |-  Lim  om
4 limsssuc 7050 . . . . . . . . . . . 12  |-  ( Lim 
om  ->  ( om  C_  x  <->  om  C_  suc  x ) )
53, 4ax-mp 5 . . . . . . . . . . 11  |-  ( om  C_  x  <->  om  C_  suc  x )
6 infensuc 8138 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  om  C_  x )  ->  x  ~~  suc  x )
76ex 450 . . . . . . . . . . 11  |-  ( x  e.  On  ->  ( om  C_  x  ->  x  ~~  suc  x ) )
85, 7syl5bir 233 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( om  C_  suc  x  ->  x  ~~  suc  x ) )
92, 8sylan9r 690 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( om  C_  ( card `  A )  ->  x  ~~  suc  x ) )
10 breq2 4657 . . . . . . . . . 10  |-  ( (
card `  A )  =  suc  x  ->  (
x  ~~  ( card `  A )  <->  x  ~~  suc  x ) )
1110adantl 482 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( x  ~~  ( card `  A )  <->  x  ~~  suc  x ) )
129, 11sylibrd 249 . . . . . . . 8  |-  ( ( x  e.  On  /\  ( card `  A )  =  suc  x )  -> 
( om  C_  ( card `  A )  ->  x  ~~  ( card `  A
) ) )
1312ex 450 . . . . . . 7  |-  ( x  e.  On  ->  (
( card `  A )  =  suc  x  ->  ( om  C_  ( card `  A
)  ->  x  ~~  ( card `  A )
) ) )
1413com3r 87 . . . . . 6  |-  ( om  C_  ( card `  A
)  ->  ( x  e.  On  ->  ( ( card `  A )  =  suc  x  ->  x  ~~  ( card `  A
) ) ) )
1514imp 445 . . . . 5  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  (
( card `  A )  =  suc  x  ->  x  ~~  ( card `  A
) ) )
16 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
1716sucid 5804 . . . . . . . . 9  |-  x  e. 
suc  x
18 eleq2 2690 . . . . . . . . 9  |-  ( (
card `  A )  =  suc  x  ->  (
x  e.  ( card `  A )  <->  x  e.  suc  x ) )
1917, 18mpbiri 248 . . . . . . . 8  |-  ( (
card `  A )  =  suc  x  ->  x  e.  ( card `  A
) )
20 cardidm 8785 . . . . . . . 8  |-  ( card `  ( card `  A
) )  =  (
card `  A )
2119, 20syl6eleqr 2712 . . . . . . 7  |-  ( (
card `  A )  =  suc  x  ->  x  e.  ( card `  ( card `  A ) ) )
22 cardne 8791 . . . . . . 7  |-  ( x  e.  ( card `  ( card `  A ) )  ->  -.  x  ~~  ( card `  A )
)
2321, 22syl 17 . . . . . 6  |-  ( (
card `  A )  =  suc  x  ->  -.  x  ~~  ( card `  A
) )
2423a1i 11 . . . . 5  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  (
( card `  A )  =  suc  x  ->  -.  x  ~~  ( card `  A
) ) )
2515, 24pm2.65d 187 . . . 4  |-  ( ( om  C_  ( card `  A )  /\  x  e.  On )  ->  -.  ( card `  A )  =  suc  x )
2625nrexdv 3001 . . 3  |-  ( om  C_  ( card `  A
)  ->  -.  E. x  e.  On  ( card `  A
)  =  suc  x
)
27 peano1 7085 . . . . . 6  |-  (/)  e.  om
28 ssel 3597 . . . . . 6  |-  ( om  C_  ( card `  A
)  ->  ( (/)  e.  om  -> 
(/)  e.  ( card `  A ) ) )
2927, 28mpi 20 . . . . 5  |-  ( om  C_  ( card `  A
)  ->  (/)  e.  (
card `  A )
)
30 n0i 3920 . . . . 5  |-  ( (/)  e.  ( card `  A
)  ->  -.  ( card `  A )  =  (/) )
31 cardon 8770 . . . . . . . . 9  |-  ( card `  A )  e.  On
3231onordi 5832 . . . . . . . 8  |-  Ord  ( card `  A )
33 ordzsl 7045 . . . . . . . 8  |-  ( Ord  ( card `  A
)  <->  ( ( card `  A )  =  (/)  \/ 
E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3432, 33mpbi 220 . . . . . . 7  |-  ( (
card `  A )  =  (/)  \/  E. x  e.  On  ( card `  A
)  =  suc  x  \/  Lim  ( card `  A
) )
35 3orass 1040 . . . . . . 7  |-  ( ( ( card `  A
)  =  (/)  \/  E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
)  <->  ( ( card `  A )  =  (/)  \/  ( E. x  e.  On  ( card `  A
)  =  suc  x  \/  Lim  ( card `  A
) ) ) )
3634, 35mpbi 220 . . . . . 6  |-  ( (
card `  A )  =  (/)  \/  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3736ori 390 . . . . 5  |-  ( -.  ( card `  A
)  =  (/)  ->  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3829, 30, 373syl 18 . . . 4  |-  ( om  C_  ( card `  A
)  ->  ( E. x  e.  On  ( card `  A )  =  suc  x  \/  Lim  ( card `  A )
) )
3938ord 392 . . 3  |-  ( om  C_  ( card `  A
)  ->  ( -.  E. x  e.  On  ( card `  A )  =  suc  x  ->  Lim  ( card `  A )
) )
4026, 39mpd 15 . 2  |-  ( om  C_  ( card `  A
)  ->  Lim  ( card `  A ) )
41 limomss 7070 . 2  |-  ( Lim  ( card `  A
)  ->  om  C_  ( card `  A ) )
4240, 41impbii 199 1  |-  ( om  C_  ( card `  A
)  <->  Lim  ( card `  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   ` cfv 5888   omcom 7065    ~~ cen 7952   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-card 8765
This theorem is referenced by:  infxpenlem  8836  alephislim  8906  cflim2  9085  winalim  9517  gruina  9640
  Copyright terms: Public domain W3C validator