MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cda1dif Structured version   Visualization version   Unicode version

Theorem cda1dif 8998
Description: Adding and subtracting one gives back the original set. Similar to pncan 10287 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
cda1dif  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { B }
)  ~~  A )

Proof of Theorem cda1dif
StepHypRef Expression
1 ovexd 6680 . . 3  |-  ( B  e.  ( A  +c  1o )  ->  ( A  +c  1o )  e. 
_V )
2 id 22 . . 3  |-  ( B  e.  ( A  +c  1o )  ->  B  e.  ( A  +c  1o ) )
3 df1o2 7572 . . . . . . . 8  |-  1o  =  { (/) }
43xpeq1i 5135 . . . . . . 7  |-  ( 1o 
X.  { 1o }
)  =  ( {
(/) }  X.  { 1o } )
5 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
6 1on 7567 . . . . . . . . 9  |-  1o  e.  On
76elexi 3213 . . . . . . . 8  |-  1o  e.  _V
85, 7xpsn 6407 . . . . . . 7  |-  ( {
(/) }  X.  { 1o } )  =  { <.
(/) ,  1o >. }
94, 8eqtri 2644 . . . . . 6  |-  ( 1o 
X.  { 1o }
)  =  { <. (/)
,  1o >. }
10 ssun2 3777 . . . . . 6  |-  ( 1o 
X.  { 1o }
)  C_  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) )
119, 10eqsstr3i 3636 . . . . 5  |-  { <. (/)
,  1o >. }  C_  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) )
12 opex 4932 . . . . . 6  |-  <. (/) ,  1o >.  e.  _V
1312snss 4316 . . . . 5  |-  ( <. (/)
,  1o >.  e.  ( ( A  X.  { (/)
} )  u.  ( 1o  X.  { 1o }
) )  <->  { <. (/) ,  1o >. }  C_  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) ) )
1411, 13mpbir 221 . . . 4  |-  <. (/) ,  1o >.  e.  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) )
15 relxp 5227 . . . . . . . 8  |-  Rel  ( _V  X.  _V )
16 cdafn 8991 . . . . . . . . . 10  |-  +c  Fn  ( _V  X.  _V )
17 fndm 5990 . . . . . . . . . 10  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
1816, 17ax-mp 5 . . . . . . . . 9  |-  dom  +c  =  ( _V  X.  _V )
1918releqi 5202 . . . . . . . 8  |-  ( Rel 
dom  +c  <->  Rel  ( _V  X.  _V ) )
2015, 19mpbir 221 . . . . . . 7  |-  Rel  dom  +c
2120ovrcl 6686 . . . . . 6  |-  ( B  e.  ( A  +c  1o )  ->  ( A  e.  _V  /\  1o  e.  _V ) )
2221simpld 475 . . . . 5  |-  ( B  e.  ( A  +c  1o )  ->  A  e. 
_V )
23 cdaval 8992 . . . . 5  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  +c  1o )  =  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) ) )
2422, 6, 23sylancl 694 . . . 4  |-  ( B  e.  ( A  +c  1o )  ->  ( A  +c  1o )  =  ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) ) )
2514, 24syl5eleqr 2708 . . 3  |-  ( B  e.  ( A  +c  1o )  ->  <. (/) ,  1o >.  e.  ( A  +c  1o ) )
26 difsnen 8042 . . 3  |-  ( ( ( A  +c  1o )  e.  _V  /\  B  e.  ( A  +c  1o )  /\  <. (/) ,  1o >.  e.  ( A  +c  1o ) )  ->  (
( A  +c  1o )  \  { B }
)  ~~  ( ( A  +c  1o )  \  { <. (/) ,  1o >. } ) )
271, 2, 25, 26syl3anc 1326 . 2  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { B }
)  ~~  ( ( A  +c  1o )  \  { <. (/) ,  1o >. } ) )
2824difeq1d 3727 . . . 4  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { <. (/) ,  1o >. } )  =  ( ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) )  \  { <. (/) ,  1o >. } ) )
29 xp01disj 7576 . . . . . 6  |-  ( ( A  X.  { (/) } )  i^i  ( 1o 
X.  { 1o }
) )  =  (/)
30 disj3 4021 . . . . . 6  |-  ( ( ( A  X.  { (/)
} )  i^i  ( 1o  X.  { 1o }
) )  =  (/)  <->  ( A  X.  { (/) } )  =  ( ( A  X.  { (/) } ) 
\  ( 1o  X.  { 1o } ) ) )
3129, 30mpbi 220 . . . . 5  |-  ( A  X.  { (/) } )  =  ( ( A  X.  { (/) } ) 
\  ( 1o  X.  { 1o } ) )
32 difun2 4048 . . . . 5  |-  ( ( ( A  X.  { (/)
} )  u.  ( 1o  X.  { 1o }
) )  \  ( 1o  X.  { 1o }
) )  =  ( ( A  X.  { (/)
} )  \  ( 1o  X.  { 1o }
) )
339difeq2i 3725 . . . . 5  |-  ( ( ( A  X.  { (/)
} )  u.  ( 1o  X.  { 1o }
) )  \  ( 1o  X.  { 1o }
) )  =  ( ( ( A  X.  { (/) } )  u.  ( 1o  X.  { 1o } ) )  \  { <. (/) ,  1o >. } )
3431, 32, 333eqtr2i 2650 . . . 4  |-  ( A  X.  { (/) } )  =  ( ( ( A  X.  { (/) } )  u.  ( 1o 
X.  { 1o }
) )  \  { <.
(/) ,  1o >. } )
3528, 34syl6eqr 2674 . . 3  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { <. (/) ,  1o >. } )  =  ( A  X.  { (/) } ) )
36 xpsneng 8045 . . . 4  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
3722, 5, 36sylancl 694 . . 3  |-  ( B  e.  ( A  +c  1o )  ->  ( A  X.  { (/) } ) 
~~  A )
3835, 37eqbrtrd 4675 . 2  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { <. (/) ,  1o >. } )  ~~  A
)
39 entr 8008 . 2  |-  ( ( ( ( A  +c  1o )  \  { B } )  ~~  (
( A  +c  1o )  \  { <. (/) ,  1o >. } )  /\  (
( A  +c  1o )  \  { <. (/) ,  1o >. } )  ~~  A
)  ->  ( ( A  +c  1o )  \  { B } )  ~~  A )
4027, 38, 39syl2anc 693 1  |-  ( B  e.  ( A  +c  1o )  ->  ( ( A  +c  1o ) 
\  { B }
)  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   dom cdm 5114   Rel wrel 5119   Oncon0 5723    Fn wfn 5883  (class class class)co 6650   1oc1o 7553    ~~ cen 7952    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-cda 8990
This theorem is referenced by:  canthp1  9476
  Copyright terms: Public domain W3C validator