| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cda1dif | Structured version Visualization version Unicode version | ||
| Description: Adding and subtracting one gives back the original set. Similar to pncan 10287 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| cda1dif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovexd 6680 |
. . 3
| |
| 2 | id 22 |
. . 3
| |
| 3 | df1o2 7572 |
. . . . . . . 8
| |
| 4 | 3 | xpeq1i 5135 |
. . . . . . 7
|
| 5 | 0ex 4790 |
. . . . . . . 8
| |
| 6 | 1on 7567 |
. . . . . . . . 9
| |
| 7 | 6 | elexi 3213 |
. . . . . . . 8
|
| 8 | 5, 7 | xpsn 6407 |
. . . . . . 7
|
| 9 | 4, 8 | eqtri 2644 |
. . . . . 6
|
| 10 | ssun2 3777 |
. . . . . 6
| |
| 11 | 9, 10 | eqsstr3i 3636 |
. . . . 5
|
| 12 | opex 4932 |
. . . . . 6
| |
| 13 | 12 | snss 4316 |
. . . . 5
|
| 14 | 11, 13 | mpbir 221 |
. . . 4
|
| 15 | relxp 5227 |
. . . . . . . 8
| |
| 16 | cdafn 8991 |
. . . . . . . . . 10
| |
| 17 | fndm 5990 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
|
| 19 | 18 | releqi 5202 |
. . . . . . . 8
|
| 20 | 15, 19 | mpbir 221 |
. . . . . . 7
|
| 21 | 20 | ovrcl 6686 |
. . . . . 6
|
| 22 | 21 | simpld 475 |
. . . . 5
|
| 23 | cdaval 8992 |
. . . . 5
| |
| 24 | 22, 6, 23 | sylancl 694 |
. . . 4
|
| 25 | 14, 24 | syl5eleqr 2708 |
. . 3
|
| 26 | difsnen 8042 |
. . 3
| |
| 27 | 1, 2, 25, 26 | syl3anc 1326 |
. 2
|
| 28 | 24 | difeq1d 3727 |
. . . 4
|
| 29 | xp01disj 7576 |
. . . . . 6
| |
| 30 | disj3 4021 |
. . . . . 6
| |
| 31 | 29, 30 | mpbi 220 |
. . . . 5
|
| 32 | difun2 4048 |
. . . . 5
| |
| 33 | 9 | difeq2i 3725 |
. . . . 5
|
| 34 | 31, 32, 33 | 3eqtr2i 2650 |
. . . 4
|
| 35 | 28, 34 | syl6eqr 2674 |
. . 3
|
| 36 | xpsneng 8045 |
. . . 4
| |
| 37 | 22, 5, 36 | sylancl 694 |
. . 3
|
| 38 | 35, 37 | eqbrtrd 4675 |
. 2
|
| 39 | entr 8008 |
. 2
| |
| 40 | 27, 38, 39 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-er 7742 df-en 7956 df-cda 8990 |
| This theorem is referenced by: canthp1 9476 |
| Copyright terms: Public domain | W3C validator |