![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdafi | Structured version Visualization version GIF version |
Description: The cardinal sum of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
Ref | Expression |
---|---|
cdafi | ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 7962 | . . . 4 ⊢ Rel ≺ | |
2 | 1 | brrelexi 5158 | . . 3 ⊢ (𝐴 ≺ ω → 𝐴 ∈ V) |
3 | 1 | brrelexi 5158 | . . 3 ⊢ (𝐵 ≺ ω → 𝐵 ∈ V) |
4 | cdaval 8992 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
5 | 2, 3, 4 | syl2an 494 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
6 | 0elon 5778 | . . . . . 6 ⊢ ∅ ∈ On | |
7 | xpsneng 8045 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ On) → (𝐴 × {∅}) ≈ 𝐴) | |
8 | 2, 6, 7 | sylancl 694 | . . . . 5 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≈ 𝐴) |
9 | sdomen1 8104 | . . . . 5 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ≺ ω → ((𝐴 × {∅}) ≺ ω ↔ 𝐴 ≺ ω)) |
11 | 10 | ibir 257 | . . 3 ⊢ (𝐴 ≺ ω → (𝐴 × {∅}) ≺ ω) |
12 | 1on 7567 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
13 | xpsneng 8045 | . . . . . 6 ⊢ ((𝐵 ∈ V ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
14 | 3, 12, 13 | sylancl 694 | . . . . 5 ⊢ (𝐵 ≺ ω → (𝐵 × {1𝑜}) ≈ 𝐵) |
15 | sdomen1 8104 | . . . . 5 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → ((𝐵 × {1𝑜}) ≺ ω ↔ 𝐵 ≺ ω)) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐵 ≺ ω → ((𝐵 × {1𝑜}) ≺ ω ↔ 𝐵 ≺ ω)) |
17 | 16 | ibir 257 | . . 3 ⊢ (𝐵 ≺ ω → (𝐵 × {1𝑜}) ≺ ω) |
18 | unfi2 8229 | . . 3 ⊢ (((𝐴 × {∅}) ≺ ω ∧ (𝐵 × {1𝑜}) ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≺ ω) | |
19 | 11, 17, 18 | syl2an 494 | . 2 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜})) ≺ ω) |
20 | 5, 19 | eqbrtrd 4675 | 1 ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 +𝑐 𝐵) ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ∅c0 3915 {csn 4177 class class class wbr 4653 × cxp 5112 Oncon0 5723 (class class class)co 6650 ωcom 7065 1𝑜c1o 7553 ≈ cen 7952 ≺ csdm 7954 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-cda 8990 |
This theorem is referenced by: canthp1lem2 9475 |
Copyright terms: Public domain | W3C validator |