MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjneg Structured version   Visualization version   GIF version

Theorem cjneg 13887
Description: Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjneg (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))

Proof of Theorem cjneg
StepHypRef Expression
1 recl 13850 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 10068 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 9995 . . . . 5 i ∈ ℂ
4 imcl 13851 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 10068 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 10020 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 695 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7neg2subd 10409 . . 3 (𝐴 ∈ ℂ → (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
9 reneg 13865 . . . 4 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
10 imneg 13873 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
1110oveq2d 6666 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = (i · -(ℑ‘𝐴)))
12 mulneg2 10467 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
133, 5, 12sylancr 695 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1411, 13eqtrd 2656 . . . 4 (𝐴 ∈ ℂ → (i · (ℑ‘-𝐴)) = -(i · (ℑ‘𝐴)))
159, 14oveq12d 6668 . . 3 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = (-(ℜ‘𝐴) − -(i · (ℑ‘𝐴))))
162, 7negsubdi2d 10408 . . 3 (𝐴 ∈ ℂ → -((ℜ‘𝐴) − (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) − (ℜ‘𝐴)))
178, 15, 163eqtr4d 2666 . 2 (𝐴 ∈ ℂ → ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
18 negcl 10281 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
19 remim 13857 . . 3 (-𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
2018, 19syl 17 . 2 (𝐴 ∈ ℂ → (∗‘-𝐴) = ((ℜ‘-𝐴) − (i · (ℑ‘-𝐴))))
21 remim 13857 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2221negeqd 10275 . 2 (𝐴 ∈ ℂ → -(∗‘𝐴) = -((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
2317, 20, 223eqtr4d 2666 1 (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cc 9934  ici 9938   · cmul 9941  cmin 10266  -cneg 10267  ccj 13836  cre 13837  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cjsub  13889  cjnegi  13922  cjnegd  13951  absneg  14017
  Copyright terms: Public domain W3C validator