MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remim Structured version   Visualization version   GIF version

Theorem remim 13857
Description: Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))

Proof of Theorem remim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cjval 13842 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
2 replim 13856 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32oveq1d 6665 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4 recl 13850 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 10068 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 ax-icn 9995 . . . . . . 7 i ∈ ℂ
7 imcl 13851 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
87recnd 10068 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
9 mulcl 10020 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
106, 8, 9sylancr 695 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
115, 10, 5ppncand 10432 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
123, 11eqtrd 2656 . . . 4 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
134, 4readdcld 10069 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
1412, 13eqeltrd 2701 . . 3 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ)
155, 10, 10pnncand 10431 . . . . . . 7 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
162oveq1d 6665 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
176a1i 11 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
1817, 8, 8adddid 10064 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((ℑ‘𝐴) + (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
1915, 16, 183eqtr4d 2666 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))
2019oveq2d 6666 . . . . 5 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
217, 7readdcld 10069 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ)
2221recnd 10068 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ)
23 mulass 10024 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
246, 6, 23mp3an12 1414 . . . . . 6 (((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2522, 24syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2620, 25eqtr4d 2659 . . . 4 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))))
27 ixi 10656 . . . . . 6 (i · i) = -1
28 neg1rr 11125 . . . . . 6 -1 ∈ ℝ
2927, 28eqeltri 2697 . . . . 5 (i · i) ∈ ℝ
30 remulcl 10021 . . . . 5 (((i · i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3129, 21, 30sylancr 695 . . . 4 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3226, 31eqeltrd 2701 . . 3 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)
335, 10subcld 10392 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ)
34 cju 11016 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
35 oveq2 6658 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3635eleq1d 2686 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ))
37 oveq2 6658 . . . . . . . 8 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3837oveq2d 6666 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (i · (𝐴𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))))
3938eleq1d 2686 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ))
4036, 39anbi12d 747 . . . . 5 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)))
4140riota2 6633 . . . 4 ((((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4233, 34, 41syl2anc 693 . . 3 (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4314, 32, 42mpbi2and 956 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
441, 43eqtrd 2656 1 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ∃!wreu 2914  cfv 5888  crio 6610  (class class class)co 6650  cc 9934  cr 9935  1c1 9937  ici 9938   + caddc 9939   · cmul 9941  cmin 10266  -cneg 10267  ccj 13836  cre 13837  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cjreb  13863  recj  13864  remullem  13868  imcj  13872  cjadd  13881  cjneg  13887  imval2  13891  cji  13899  remimd  13938
  Copyright terms: Public domain W3C validator