![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssad | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 3787. Partial converse of unssd 3789. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssad | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 3787 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 224 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simpld 475 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∪ cun 3572 ⊆ wss 3574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 |
This theorem is referenced by: ersym 7754 findcard2d 8202 finsschain 8273 r0weon 8835 ackbij1lem16 9057 wunex2 9560 sumsplit 14499 fsumabs 14533 fsumiun 14553 mrieqvlemd 16289 yonedalem1 16912 yonedalem21 16913 yonedalem22 16918 yonffthlem 16922 lsmsp 19086 mplcoe1 19465 mdetunilem9 20426 ordtbas 20996 isufil2 21712 ufileu 21723 filufint 21724 fmfnfm 21762 flimclslem 21788 fclsfnflim 21831 flimfnfcls 21832 imasdsf1olem 22178 mbfeqalem 23409 limcdif 23640 jensenlem1 24713 jensenlem2 24714 jensen 24715 gsumvsca1 29782 gsumvsca2 29783 ordtconnlem1 29970 ssmcls 31464 mclsppslem 31480 rngunsnply 37743 mptrcllem 37920 clcnvlem 37930 brtrclfv2 38019 isotone1 38346 dvnprodlem1 40161 |
Copyright terms: Public domain | W3C validator |