![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2res | Structured version Visualization version GIF version |
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmpt1res.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
cnmpt1res.3 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt1res.5 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
cnmpt2res.7 | ⊢ 𝑁 = (𝑀 ↾t 𝑊) |
cnmpt2res.8 | ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) |
cnmpt2res.9 | ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
cnmpt2res.10 | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) |
Ref | Expression |
---|---|
cnmpt2res | ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt2res.10 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) | |
2 | cnmpt1res.5 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
3 | cnmpt2res.9 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) | |
4 | xpss12 5225 | . . . . 5 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) | |
5 | 2, 3, 4 | syl2anc 693 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) |
6 | cnmpt1res.3 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | cnmpt2res.8 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) | |
8 | txtopon 21394 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) | |
9 | 6, 7, 8 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) |
10 | toponuni 20719 | . . . . 5 ⊢ ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) |
12 | 5, 11 | sseqtrd 3641 | . . 3 ⊢ (𝜑 → (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) |
13 | eqid 2622 | . . . 4 ⊢ ∪ (𝐽 ×t 𝑀) = ∪ (𝐽 ×t 𝑀) | |
14 | 13 | cnrest 21089 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ ∪ (𝐽 ×t 𝑀)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
15 | 1, 12, 14 | syl2anc 693 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
16 | resmpt2 6758 | . . 3 ⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) | |
17 | 2, 3, 16 | syl2anc 693 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) |
18 | topontop 20718 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
19 | 6, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
20 | topontop 20718 | . . . . . 6 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top) | |
21 | 7, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ Top) |
22 | toponmax 20730 | . . . . . . 7 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
23 | 6, 22 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
24 | 23, 2 | ssexd 4805 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ V) |
25 | toponmax 20730 | . . . . . . 7 ⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑍 ∈ 𝑀) | |
26 | 7, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑀) |
27 | 26, 3 | ssexd 4805 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ V) |
28 | txrest 21434 | . . . . 5 ⊢ (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) | |
29 | 19, 21, 24, 27, 28 | syl22anc 1327 | . . . 4 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) |
30 | cnmpt1res.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
31 | cnmpt2res.7 | . . . . 5 ⊢ 𝑁 = (𝑀 ↾t 𝑊) | |
32 | 30, 31 | oveq12i 6662 | . . . 4 ⊢ (𝐾 ×t 𝑁) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊)) |
33 | 29, 32 | syl6eqr 2674 | . . 3 ⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁)) |
34 | 33 | oveq1d 6665 | . 2 ⊢ (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿)) |
35 | 15, 17, 34 | 3eltr3d 2715 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⊆ wss 3574 ∪ cuni 4436 × cxp 5112 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ↾t crest 16081 Topctop 20698 TopOnctopon 20715 Cn ccn 21028 ×t ctx 21363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 |
This theorem is referenced by: symgtgp 21905 submtmd 21908 iimulcn 22737 cxpcn2 24487 cxpcn3 24489 cvxsconn 31225 cvmlift2lem6 31290 cvmlift2lem12 31296 |
Copyright terms: Public domain | W3C validator |