Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem6 Structured version   Visualization version   GIF version

Theorem cvmlift2lem6 31290
Description: Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
Assertion
Ref Expression
cvmlift2lem6 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Distinct variable groups:   𝑥,𝑓,𝑦,𝑧,𝐹   𝜑,𝑓,𝑥,𝑦,𝑧   𝑓,𝐽,𝑥,𝑦,𝑧   𝑓,𝐺,𝑥,𝑦,𝑧   𝑓,𝐻,𝑥,𝑦,𝑧   𝑓,𝑋,𝑥,𝑦,𝑧   𝐶,𝑓,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑓,𝐾,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐵(𝑓)

Proof of Theorem cvmlift2lem6
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . . . . . . 8 𝐵 = 𝐶
2 cvmlift2.f . . . . . . . 8 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . . . . . . 8 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . . . . . . 8 (𝜑𝑃𝐵)
5 cvmlift2.i . . . . . . . 8 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . . . . . . 8 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . . . . . . 8 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 31289 . . . . . . 7 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
98adantr 481 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
10 ffn 6045 . . . . . 6 (𝐾:((0[,]1) × (0[,]1))⟶𝐵𝐾 Fn ((0[,]1) × (0[,]1)))
119, 10syl 17 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
12 fnov 6768 . . . . 5 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1311, 12sylib 208 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝐾 = (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1413reseq1d 5395 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))))
15 simpr 477 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
1615snssd 4340 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → {𝑋} ⊆ (0[,]1))
17 ssid 3624 . . . . 5 (0[,]1) ⊆ (0[,]1)
18 resmpt2 6758 . . . . 5 (({𝑋} ⊆ (0[,]1) ∧ (0[,]1) ⊆ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
1916, 17, 18sylancl 694 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)))
20 elsni 4194 . . . . . . . 8 (𝑢 ∈ {𝑋} → 𝑢 = 𝑋)
21203ad2ant2 1083 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑢 = 𝑋)
2221oveq1d 6665 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = (𝑋𝐾𝑣))
23 simp1r 1086 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
24 simp3 1063 . . . . . . 7 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → 𝑣 ∈ (0[,]1))
251, 2, 3, 4, 5, 6, 7cvmlift2lem4 31288 . . . . . . 7 ((𝑋 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2623, 24, 25syl2anc 693 . . . . . 6 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑋𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2722, 26eqtrd 2656 . . . . 5 (((𝜑𝑋 ∈ (0[,]1)) ∧ 𝑢 ∈ {𝑋} ∧ 𝑣 ∈ (0[,]1)) → (𝑢𝐾𝑣) = ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣))
2827mpt2eq3dva 6719 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
2919, 28eqtrd 2656 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ (𝑢𝐾𝑣)) ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
3014, 29eqtrd 2656 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) = (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)))
31 eqid 2622 . . . 4 (II ↾t {𝑋}) = (II ↾t {𝑋})
32 iitopon 22682 . . . . 5 II ∈ (TopOn‘(0[,]1))
3332a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
34 eqid 2622 . . . 4 (II ↾t (0[,]1)) = (II ↾t (0[,]1))
3517a1i 11 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (0[,]1) ⊆ (0[,]1))
3633, 33cnmpt2nd 21472 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ 𝑣) ∈ ((II ×t II) Cn II))
37 eqid 2622 . . . . . . 7 (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
381, 2, 3, 4, 5, 6, 37cvmlift2lem3 31287 . . . . . 6 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶) ∧ (𝐹 ∘ (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘0) = (𝐻𝑋)))
3938simp1d 1073 . . . . 5 ((𝜑𝑋 ∈ (0[,]1)) → (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋))) ∈ (II Cn 𝐶))
4033, 33, 36, 39cnmpt21f 21475 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ (0[,]1), 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ ((II ×t II) Cn 𝐶))
4131, 33, 16, 34, 33, 35, 40cnmpt2res 21480 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶))
42 iitop 22683 . . . . 5 II ∈ Top
43 snex 4908 . . . . 5 {𝑋} ∈ V
44 ovex 6678 . . . . 5 (0[,]1) ∈ V
45 txrest 21434 . . . . 5 (((II ∈ Top ∧ II ∈ Top) ∧ ({𝑋} ∈ V ∧ (0[,]1) ∈ V)) → ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1))))
4642, 42, 43, 44, 45mp4an 709 . . . 4 ((II ×t II) ↾t ({𝑋} × (0[,]1))) = ((II ↾t {𝑋}) ×t (II ↾t (0[,]1)))
4746oveq1i 6660 . . 3 (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶) = (((II ↾t {𝑋}) ×t (II ↾t (0[,]1))) Cn 𝐶)
4841, 47syl6eleqr 2712 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑢 ∈ {𝑋}, 𝑣 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))‘𝑣)) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
4930, 48eqeltrd 2701 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  0cc0 9936  1c1 9937  [,]cicc 12178  t crest 16081  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmlift2lem9  31293
  Copyright terms: Public domain W3C validator