| Step | Hyp | Ref
| Expression |
| 1 | | cnmptkp.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 2 | 1 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑌) |
| 3 | | cnmptk1.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 5 | | cnmptk1.l |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 6 | | topontop 20718 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ Top) |
| 8 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ Top) |
| 9 | | eqid 2622 |
. . . . . . . . 9
⊢ ∪ 𝐿 =
∪ 𝐿 |
| 10 | 9 | toptopon 20722 |
. . . . . . . 8
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 11 | 8, 10 | sylib 208 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 12 | | cnmptk1.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 13 | | topontop 20718 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 14 | 3, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ Top) |
| 15 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾) |
| 16 | 15 | xkotopon 21403 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 17 | 14, 7, 16 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 18 | | cnmptkp.a |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 19 | | cnf2 21053 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 20 | 12, 17, 18, 19 | syl3anc 1326 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 21 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 22 | 21 | fmpt 6381 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑋 (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿) ↔ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 23 | 20, 22 | sylibr 224 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 24 | 23 | r19.21bi 2932 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 25 | | cnf2 21053 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 26 | 4, 11, 24, 25 | syl3anc 1326 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 27 | | eqid 2622 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
| 28 | 27 | fmpt 6381 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 𝐴 ∈ ∪ 𝐿 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶∪ 𝐿) |
| 29 | 26, 28 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿) |
| 30 | | cnmptkp.c |
. . . . . . 7
⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
| 31 | 30 | eleq1d 2686 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (𝐴 ∈ ∪ 𝐿 ↔ 𝐶 ∈ ∪ 𝐿)) |
| 32 | 31 | rspcv 3305 |
. . . . 5
⊢ (𝐵 ∈ 𝑌 → (∀𝑦 ∈ 𝑌 𝐴 ∈ ∪ 𝐿 → 𝐶 ∈ ∪ 𝐿)) |
| 33 | 2, 29, 32 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ∪ 𝐿) |
| 34 | 30, 27 | fvmptg 6280 |
. . . 4
⊢ ((𝐵 ∈ 𝑌 ∧ 𝐶 ∈ ∪ 𝐿) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
| 35 | 2, 33, 34 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
| 36 | 35 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
| 37 | | toponuni 20719 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 38 | 3, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 39 | 1, 38 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ∪ 𝐾) |
| 40 | | eqid 2622 |
. . . . 5
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 41 | 40 | xkopjcn 21459 |
. . . 4
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 ∈ ∪ 𝐾)
→ (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤‘𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿)) |
| 42 | 14, 7, 39, 41 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤‘𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿)) |
| 43 | | fveq1 6190 |
. . 3
⊢ (𝑤 = (𝑦 ∈ 𝑌 ↦ 𝐴) → (𝑤‘𝐵) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
| 44 | 12, 18, 17, 42, 43 | cnmpt11 21466 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿)) |
| 45 | 36, 44 | eqeltrrd 2702 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |