MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptkp Structured version   Visualization version   GIF version

Theorem cnmptkp 21483
Description: The evaluation of the inner function in a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptkp.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
cnmptkp.b (𝜑𝐵𝑌)
cnmptkp.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptkp (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑍,𝑦   𝑥,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑦,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)

Proof of Theorem cnmptkp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 cnmptkp.b . . . . 5 (𝜑𝐵𝑌)
21adantr 481 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
3 cnmptk1.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
43adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
5 cnmptk1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑍))
6 topontop 20718 . . . . . . . . . 10 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
75, 6syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
87adantr 481 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐿 ∈ Top)
9 eqid 2622 . . . . . . . . 9 𝐿 = 𝐿
109toptopon 20722 . . . . . . . 8 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
118, 10sylib 208 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘ 𝐿))
12 cnmptk1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
13 topontop 20718 . . . . . . . . . . . 12 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
143, 13syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ Top)
15 eqid 2622 . . . . . . . . . . . 12 (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾)
1615xkotopon 21403 . . . . . . . . . . 11 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
1714, 7, 16syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
18 cnmptkp.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾)))
19 cnf2 21053 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2012, 17, 18, 19syl3anc 1326 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
21 eqid 2622 . . . . . . . . . 10 (𝑥𝑋 ↦ (𝑦𝑌𝐴)) = (𝑥𝑋 ↦ (𝑦𝑌𝐴))
2221fmpt 6381 . . . . . . . . 9 (∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿) ↔ (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2320, 22sylibr 224 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
2423r19.21bi 2932 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
25 cnf2 21053 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌 𝐿)
264, 11, 24, 25syl3anc 1326 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌 𝐿)
27 eqid 2622 . . . . . . 7 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2827fmpt 6381 . . . . . 6 (∀𝑦𝑌 𝐴 𝐿 ↔ (𝑦𝑌𝐴):𝑌 𝐿)
2926, 28sylibr 224 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 𝐿)
30 cnmptkp.c . . . . . . 7 (𝑦 = 𝐵𝐴 = 𝐶)
3130eleq1d 2686 . . . . . 6 (𝑦 = 𝐵 → (𝐴 𝐿𝐶 𝐿))
3231rspcv 3305 . . . . 5 (𝐵𝑌 → (∀𝑦𝑌 𝐴 𝐿𝐶 𝐿))
332, 29, 32sylc 65 . . . 4 ((𝜑𝑥𝑋) → 𝐶 𝐿)
3430, 27fvmptg 6280 . . . 4 ((𝐵𝑌𝐶 𝐿) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
352, 33, 34syl2anc 693 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3635mpteq2dva 4744 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
37 toponuni 20719 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
383, 37syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
391, 38eleqtrd 2703 . . . 4 (𝜑𝐵 𝐾)
40 eqid 2622 . . . . 5 𝐾 = 𝐾
4140xkopjcn 21459 . . . 4 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top ∧ 𝐵 𝐾) → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿))
4214, 7, 39, 41syl3anc 1326 . . 3 (𝜑 → (𝑤 ∈ (𝐾 Cn 𝐿) ↦ (𝑤𝐵)) ∈ ((𝐿 ^ko 𝐾) Cn 𝐿))
43 fveq1 6190 . . 3 (𝑤 = (𝑦𝑌𝐴) → (𝑤𝐵) = ((𝑦𝑌𝐴)‘𝐵))
4412, 18, 17, 42, 43cnmpt11 21466 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
4536, 44eqeltrrd 2702 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912   cuni 4436  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-xko 21366
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator