MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnprest2 Structured version   Visualization version   GIF version

Theorem cnprest2 21094
Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cnprest.1 𝑋 = 𝐽
cnprest.2 𝑌 = 𝐾
Assertion
Ref Expression
cnprest2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))

Proof of Theorem cnprest2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnptop1 21046 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top)
2 cnprest.1 . . . . 5 𝑋 = 𝐽
32cnprcl 21049 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃𝑋)
41, 3jca 554 . . 3 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
54a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
6 cnptop1 21046 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝐽 ∈ Top)
72cnprcl 21049 . . . 4 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → 𝑃𝑋)
86, 7jca 554 . . 3 (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋))
98a1i 11 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃𝑋)))
10 simpl2 1065 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝐵)
11 simprr 796 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑃𝑋)
1210, 11ffvelrnd 6360 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑃) ∈ 𝐵)
1312biantrud 528 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵)))
14 elin 3796 . . . . . . . 8 ((𝐹𝑃) ∈ (𝑥𝐵) ↔ ((𝐹𝑃) ∈ 𝑥 ∧ (𝐹𝑃) ∈ 𝐵))
1513, 14syl6bbr 278 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑃) ∈ 𝑥 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
16 imassrn 5477 . . . . . . . . . . . 12 (𝐹𝑦) ⊆ ran 𝐹
17 frn 6053 . . . . . . . . . . . . 13 (𝐹:𝑋𝐵 → ran 𝐹𝐵)
1810, 17syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ran 𝐹𝐵)
1916, 18syl5ss 3614 . . . . . . . . . . 11 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹𝑦) ⊆ 𝐵)
2019biantrud 528 . . . . . . . . . 10 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵)))
21 ssin 3835 . . . . . . . . . 10 (((𝐹𝑦) ⊆ 𝑥 ∧ (𝐹𝑦) ⊆ 𝐵) ↔ (𝐹𝑦) ⊆ (𝑥𝐵))
2220, 21syl6bb 276 . . . . . . . . 9 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
2322anbi2d 740 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2423rexbidv 3052 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
2515, 24imbi12d 334 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
2625ralbidv 2986 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
27 vex 3203 . . . . . . . 8 𝑥 ∈ V
2827inex1 4799 . . . . . . 7 (𝑥𝐵) ∈ V
2928a1i 11 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑥𝐾) → (𝑥𝐵) ∈ V)
30 simpl1 1064 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ Top)
31 cnprest.2 . . . . . . . . . 10 𝑌 = 𝐾
32 uniexg 6955 . . . . . . . . . 10 (𝐾 ∈ Top → 𝐾 ∈ V)
3331, 32syl5eqel 2705 . . . . . . . . 9 (𝐾 ∈ Top → 𝑌 ∈ V)
3430, 33syl 17 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝑌 ∈ V)
35 simpl3 1066 . . . . . . . 8 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵𝑌)
3634, 35ssexd 4805 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐵 ∈ V)
37 elrest 16088 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
3830, 36, 37syl2anc 693 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝑧 ∈ (𝐾t 𝐵) ↔ ∃𝑥𝐾 𝑧 = (𝑥𝐵)))
39 eleq2 2690 . . . . . . . 8 (𝑧 = (𝑥𝐵) → ((𝐹𝑃) ∈ 𝑧 ↔ (𝐹𝑃) ∈ (𝑥𝐵)))
40 sseq2 3627 . . . . . . . . . 10 (𝑧 = (𝑥𝐵) → ((𝐹𝑦) ⊆ 𝑧 ↔ (𝐹𝑦) ⊆ (𝑥𝐵)))
4140anbi2d 740 . . . . . . . . 9 (𝑧 = (𝑥𝐵) → ((𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4241rexbidv 3052 . . . . . . . 8 (𝑧 = (𝑥𝐵) → (∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧) ↔ ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵))))
4339, 42imbi12d 334 . . . . . . 7 (𝑧 = (𝑥𝐵) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4443adantl 482 . . . . . 6 ((((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) ∧ 𝑧 = (𝑥𝐵)) → (((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4529, 38, 44ralxfr2d 4882 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ (𝑥𝐵) → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ (𝑥𝐵)))))
4626, 45bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
47 simprl 794 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ Top)
482, 31iscnp2 21043 . . . . . . 7 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
4948baib 944 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5047, 30, 11, 49syl3anc 1326 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5110, 35fssd 6057 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐹:𝑋𝑌)
5251biantrurd 529 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))))
5350, 52bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥𝐾 ((𝐹𝑃) ∈ 𝑥 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))))
542toptopon 20722 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
5547, 54sylib 208 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
5631toptopon 20722 . . . . . . . 8 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
5730, 56sylib 208 . . . . . . 7 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
58 resttopon 20965 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵𝑌) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
5957, 35, 58syl2anc 693 . . . . . 6 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐾t 𝐵) ∈ (TopOn‘𝐵))
60 iscnp 21041 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6155, 59, 11, 60syl3anc 1326 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6210biantrurd 529 . . . . 5 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)) ↔ (𝐹:𝑋𝐵 ∧ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧)))))
6361, 62bitr4d 271 . . . 4 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾t 𝐵)((𝐹𝑃) ∈ 𝑧 → ∃𝑦𝐽 (𝑃𝑦 ∧ (𝐹𝑦) ⊆ 𝑧))))
6446, 53, 633bitr4d 300 . . 3 (((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
6564ex 450 . 2 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → ((𝐽 ∈ Top ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃))))
665, 9, 65pm5.21ndd 369 1 ((𝐾 ∈ Top ∧ 𝐹:𝑋𝐵𝐵𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾t 𝐵))‘𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574   cuni 4436  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cnp 21032
This theorem is referenced by:  limccnp  23655  limccnp2  23656  dirkercncflem4  40323  dirkercncf  40324  fouriercnp  40443
  Copyright terms: Public domain W3C validator