Step | Hyp | Ref
| Expression |
1 | | cnptop1 21046 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝐽 ∈ Top) |
2 | | cnprest.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
3 | 2 | cnprcl 21049 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → 𝑃 ∈ 𝑋) |
4 | 1, 3 | jca 554 |
. . 3
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) |
5 | 4 | a1i 11 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋))) |
6 | | cnptop1 21046 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → 𝐽 ∈ Top) |
7 | 2 | cnprcl 21049 |
. . . 4
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → 𝑃 ∈ 𝑋) |
8 | 6, 7 | jca 554 |
. . 3
⊢ (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) |
9 | 8 | a1i 11 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) → (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋))) |
10 | | simpl2 1065 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐹:𝑋⟶𝐵) |
11 | | simprr 796 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝑃 ∈ 𝑋) |
12 | 10, 11 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹‘𝑃) ∈ 𝐵) |
13 | 12 | biantrud 528 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹‘𝑃) ∈ 𝑥 ↔ ((𝐹‘𝑃) ∈ 𝑥 ∧ (𝐹‘𝑃) ∈ 𝐵))) |
14 | | elin 3796 |
. . . . . . . 8
⊢ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) ↔ ((𝐹‘𝑃) ∈ 𝑥 ∧ (𝐹‘𝑃) ∈ 𝐵)) |
15 | 13, 14 | syl6bbr 278 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹‘𝑃) ∈ 𝑥 ↔ (𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵))) |
16 | | imassrn 5477 |
. . . . . . . . . . . 12
⊢ (𝐹 “ 𝑦) ⊆ ran 𝐹 |
17 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
18 | 10, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ran 𝐹 ⊆ 𝐵) |
19 | 16, 18 | syl5ss 3614 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 “ 𝑦) ⊆ 𝐵) |
20 | 19 | biantrud 528 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹 “ 𝑦) ⊆ 𝑥 ↔ ((𝐹 “ 𝑦) ⊆ 𝑥 ∧ (𝐹 “ 𝑦) ⊆ 𝐵))) |
21 | | ssin 3835 |
. . . . . . . . . 10
⊢ (((𝐹 “ 𝑦) ⊆ 𝑥 ∧ (𝐹 “ 𝑦) ⊆ 𝐵) ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)) |
22 | 20, 21 | syl6bb 276 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝐹 “ 𝑦) ⊆ 𝑥 ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))) |
23 | 22 | anbi2d 740 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → ((𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
24 | 23 | rexbidv 3052 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥) ↔ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
25 | 15, 24 | imbi12d 334 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
26 | 25 | ralbidv 2986 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
27 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
28 | 27 | inex1 4799 |
. . . . . . 7
⊢ (𝑥 ∩ 𝐵) ∈ V |
29 | 28 | a1i 11 |
. . . . . 6
⊢ ((((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) ∧ 𝑥 ∈ 𝐾) → (𝑥 ∩ 𝐵) ∈ V) |
30 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐾 ∈ Top) |
31 | | cnprest.2 |
. . . . . . . . . 10
⊢ 𝑌 = ∪
𝐾 |
32 | | uniexg 6955 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Top → ∪ 𝐾
∈ V) |
33 | 31, 32 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝐾 ∈ Top → 𝑌 ∈ V) |
34 | 30, 33 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝑌 ∈ V) |
35 | | simpl3 1066 |
. . . . . . . 8
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐵 ⊆ 𝑌) |
36 | 34, 35 | ssexd 4805 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐵 ∈ V) |
37 | | elrest 16088 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝐵 ∈ V) → (𝑧 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑧 = (𝑥 ∩ 𝐵))) |
38 | 30, 36, 37 | syl2anc 693 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝑧 ∈ (𝐾 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐾 𝑧 = (𝑥 ∩ 𝐵))) |
39 | | eleq2 2690 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝐹‘𝑃) ∈ 𝑧 ↔ (𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵))) |
40 | | sseq2 3627 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝐹 “ 𝑦) ⊆ 𝑧 ↔ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))) |
41 | 40 | anbi2d 740 |
. . . . . . . . 9
⊢ (𝑧 = (𝑥 ∩ 𝐵) → ((𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
42 | 41 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑧 = (𝑥 ∩ 𝐵) → (∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧) ↔ ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵)))) |
43 | 39, 42 | imbi12d 334 |
. . . . . . 7
⊢ (𝑧 = (𝑥 ∩ 𝐵) → (((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
44 | 43 | adantl 482 |
. . . . . 6
⊢ ((((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) ∧ 𝑧 = (𝑥 ∩ 𝐵)) → (((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
45 | 29, 38, 44 | ralxfr2d 4882 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ (𝑥 ∩ 𝐵) → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ (𝑥 ∩ 𝐵))))) |
46 | 26, 45 | bitr4d 271 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)))) |
47 | | simprl 794 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐽 ∈ Top) |
48 | 2, 31 | iscnp2 21043 |
. . . . . . 7
⊢ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
49 | 48 | baib 944 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
50 | 47, 30, 11, 49 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
51 | 10, 35 | fssd 6057 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐹:𝑋⟶𝑌) |
52 | 51 | biantrurd 529 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥))))) |
53 | 50, 52 | bitr4d 271 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ ∀𝑥 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑥 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑥)))) |
54 | 2 | toptopon 20722 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
55 | 47, 54 | sylib 208 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
56 | 31 | toptopon 20722 |
. . . . . . . 8
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) |
57 | 30, 56 | sylib 208 |
. . . . . . 7
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → 𝐾 ∈ (TopOn‘𝑌)) |
58 | | resttopon 20965 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ⊆ 𝑌) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
59 | 57, 35, 58 | syl2anc 693 |
. . . . . 6
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵)) |
60 | | iscnp 21041 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐾 ↾t 𝐵) ∈ (TopOn‘𝐵) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ (𝐹:𝑋⟶𝐵 ∧ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧))))) |
61 | 55, 59, 11, 60 | syl3anc 1326 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ (𝐹:𝑋⟶𝐵 ∧ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧))))) |
62 | 10 | biantrurd 529 |
. . . . 5
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)) ↔ (𝐹:𝑋⟶𝐵 ∧ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧))))) |
63 | 61, 62 | bitr4d 271 |
. . . 4
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃) ↔ ∀𝑧 ∈ (𝐾 ↾t 𝐵)((𝐹‘𝑃) ∈ 𝑧 → ∃𝑦 ∈ 𝐽 (𝑃 ∈ 𝑦 ∧ (𝐹 “ 𝑦) ⊆ 𝑧)))) |
64 | 46, 53, 63 | 3bitr4d 300 |
. . 3
⊢ (((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |
65 | 64 | ex 450 |
. 2
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃)))) |
66 | 5, 9, 65 | pm5.21ndd 369 |
1
⊢ ((𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |