| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnprest2 | Structured version Visualization version Unicode version | ||
| Description: Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnprest.1 |
|
| cnprest.2 |
|
| Ref | Expression |
|---|---|
| cnprest2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnptop1 21046 |
. . . 4
| |
| 2 | cnprest.1 |
. . . . 5
| |
| 3 | 2 | cnprcl 21049 |
. . . 4
|
| 4 | 1, 3 | jca 554 |
. . 3
|
| 5 | 4 | a1i 11 |
. 2
|
| 6 | cnptop1 21046 |
. . . 4
| |
| 7 | 2 | cnprcl 21049 |
. . . 4
|
| 8 | 6, 7 | jca 554 |
. . 3
|
| 9 | 8 | a1i 11 |
. 2
|
| 10 | simpl2 1065 |
. . . . . . . . . 10
| |
| 11 | simprr 796 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | ffvelrnd 6360 |
. . . . . . . . 9
|
| 13 | 12 | biantrud 528 |
. . . . . . . 8
|
| 14 | elin 3796 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl6bbr 278 |
. . . . . . 7
|
| 16 | imassrn 5477 |
. . . . . . . . . . . 12
| |
| 17 | frn 6053 |
. . . . . . . . . . . . 13
| |
| 18 | 10, 17 | syl 17 |
. . . . . . . . . . . 12
|
| 19 | 16, 18 | syl5ss 3614 |
. . . . . . . . . . 11
|
| 20 | 19 | biantrud 528 |
. . . . . . . . . 10
|
| 21 | ssin 3835 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | syl6bb 276 |
. . . . . . . . 9
|
| 23 | 22 | anbi2d 740 |
. . . . . . . 8
|
| 24 | 23 | rexbidv 3052 |
. . . . . . 7
|
| 25 | 15, 24 | imbi12d 334 |
. . . . . 6
|
| 26 | 25 | ralbidv 2986 |
. . . . 5
|
| 27 | vex 3203 |
. . . . . . . 8
| |
| 28 | 27 | inex1 4799 |
. . . . . . 7
|
| 29 | 28 | a1i 11 |
. . . . . 6
|
| 30 | simpl1 1064 |
. . . . . . 7
| |
| 31 | cnprest.2 |
. . . . . . . . . 10
| |
| 32 | uniexg 6955 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl5eqel 2705 |
. . . . . . . . 9
|
| 34 | 30, 33 | syl 17 |
. . . . . . . 8
|
| 35 | simpl3 1066 |
. . . . . . . 8
| |
| 36 | 34, 35 | ssexd 4805 |
. . . . . . 7
|
| 37 | elrest 16088 |
. . . . . . 7
| |
| 38 | 30, 36, 37 | syl2anc 693 |
. . . . . 6
|
| 39 | eleq2 2690 |
. . . . . . . 8
| |
| 40 | sseq2 3627 |
. . . . . . . . . 10
| |
| 41 | 40 | anbi2d 740 |
. . . . . . . . 9
|
| 42 | 41 | rexbidv 3052 |
. . . . . . . 8
|
| 43 | 39, 42 | imbi12d 334 |
. . . . . . 7
|
| 44 | 43 | adantl 482 |
. . . . . 6
|
| 45 | 29, 38, 44 | ralxfr2d 4882 |
. . . . 5
|
| 46 | 26, 45 | bitr4d 271 |
. . . 4
|
| 47 | simprl 794 |
. . . . . 6
| |
| 48 | 2, 31 | iscnp2 21043 |
. . . . . . 7
|
| 49 | 48 | baib 944 |
. . . . . 6
|
| 50 | 47, 30, 11, 49 | syl3anc 1326 |
. . . . 5
|
| 51 | 10, 35 | fssd 6057 |
. . . . . 6
|
| 52 | 51 | biantrurd 529 |
. . . . 5
|
| 53 | 50, 52 | bitr4d 271 |
. . . 4
|
| 54 | 2 | toptopon 20722 |
. . . . . . 7
|
| 55 | 47, 54 | sylib 208 |
. . . . . 6
|
| 56 | 31 | toptopon 20722 |
. . . . . . . 8
|
| 57 | 30, 56 | sylib 208 |
. . . . . . 7
|
| 58 | resttopon 20965 |
. . . . . . 7
| |
| 59 | 57, 35, 58 | syl2anc 693 |
. . . . . 6
|
| 60 | iscnp 21041 |
. . . . . 6
| |
| 61 | 55, 59, 11, 60 | syl3anc 1326 |
. . . . 5
|
| 62 | 10 | biantrurd 529 |
. . . . 5
|
| 63 | 61, 62 | bitr4d 271 |
. . . 4
|
| 64 | 46, 53, 63 | 3bitr4d 300 |
. . 3
|
| 65 | 64 | ex 450 |
. 2
|
| 66 | 5, 9, 65 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-fin 7959 df-fi 8317 df-rest 16083 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cnp 21032 |
| This theorem is referenced by: limccnp 23655 limccnp2 23656 dirkercncflem4 40323 dirkercncf 40324 fouriercnp 40443 |
| Copyright terms: Public domain | W3C validator |