MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn2 Structured version   Visualization version   GIF version

Theorem dfnn2 11033
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 11021 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1ex 10035 . . . . 5 1 ∈ V
21elintab 4487 . . . 4 (1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥))
3 simpl 473 . . . 4 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥)
42, 3mpgbir 1726 . . 3 1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
5 oveq1 6657 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
65eleq1d 2686 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑧 + 1) ∈ 𝑥))
76rspccv 3306 . . . . . . . 8 (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
87adantl 482 . . . . . . 7 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
98a2i 14 . . . . . 6 (((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
109alimi 1739 . . . . 5 (∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
11 vex 3203 . . . . . 6 𝑧 ∈ V
1211elintab 4487 . . . . 5 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥))
13 ovex 6678 . . . . . 6 (𝑧 + 1) ∈ V
1413elintab 4487 . . . . 5 ((𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
1510, 12, 143imtr4i 281 . . . 4 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
1615rgen 2922 . . 3 𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
17 peano5nni 11023 . . 3 ((1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
184, 16, 17mp2an 708 . 2 ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
19 1nn 11031 . . . 4 1 ∈ ℕ
20 peano2nn 11032 . . . . 5 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2120rgen 2922 . . . 4 𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ
22 nnex 11026 . . . . 5 ℕ ∈ V
23 eleq2 2690 . . . . . 6 (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ))
24 eleq2 2690 . . . . . . 7 (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ))
2524raleqbi1dv 3146 . . . . . 6 (𝑥 = ℕ → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2623, 25anbi12d 747 . . . . 5 (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)))
2722, 26elab 3350 . . . 4 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2819, 21, 27mpbir2an 955 . . 3 ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
29 intss1 4492 . . 3 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ)
3028, 29ax-mp 5 . 2 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ
3118, 30eqssi 3619 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wss 3574   cint 4475  (class class class)co 6650  1c1 9937   + caddc 9939  cn 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021
This theorem is referenced by:  dfnn3  11034
  Copyright terms: Public domain W3C validator