![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 7530 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
2 | fvelrnb 6243 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
4 | ovex 6678 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
5 | eqid 2622 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
6 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
7 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
8 | 5, 6, 7 | frsucmpt2 7535 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
9 | 4, 8 | mpan2 707 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
10 | peano2 7086 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
11 | fnfvelrn 6356 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
12 | 1, 10, 11 | sylancr 695 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
13 | df-nn 11021 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
14 | df-ima 5127 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
15 | 13, 14 | eqtri 2644 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
16 | 12, 15 | syl6eleqr 2712 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
17 | 9, 16 | eqeltrrd 2702 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
18 | oveq1 6657 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
19 | 18 | eleq1d 2686 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
20 | 17, 19 | syl5ibcom 235 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
21 | 20 | rexlimiv 3027 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
22 | 3, 21 | sylbi 207 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
23 | 22, 15 | eleq2s 2719 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ↦ cmpt 4729 ran crn 5115 ↾ cres 5116 “ cima 5117 suc csuc 5725 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 ωcom 7065 reccrdg 7505 1c1 9937 + caddc 9939 ℕcn 11020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 |
This theorem is referenced by: dfnn2 11033 dfnn3 11034 peano2nnd 11037 nnind 11038 nnaddcl 11042 2nn 11185 3nn 11186 4nn 11187 5nn 11188 6nn 11189 7nn 11190 8nn 11191 9nn 11192 10nnOLD 11193 nnunb 11288 nneo 11461 10nn 11514 fzonn0p1p1 12546 ser1const 12857 expp1 12867 facp1 13065 relexpsucnnl 13772 isercolllem1 14395 isercoll2 14399 climcndslem2 14582 climcnds 14583 harmonic 14591 trireciplem 14594 trirecip 14595 rpnnen2lem9 14951 sqrt2irr 14979 nno 15098 nnoddm1d2 15102 rplpwr 15276 prmind2 15398 eulerthlem2 15487 pcmpt 15596 pockthi 15611 prmreclem6 15625 dec5nprm 15770 mulgnnp1 17549 chfacfisf 20659 chfacfisfcpmat 20660 cayhamlem1 20671 1stcfb 21248 bcthlem3 23123 bcthlem4 23124 ovolunlem1a 23264 ovolicc2lem4 23288 voliunlem1 23318 volsup 23324 volsup2 23373 itg1climres 23481 mbfi1fseqlem5 23486 itg2monolem1 23517 itg2i1fseqle 23521 itg2i1fseq 23522 itg2i1fseq2 23523 itg2addlem 23525 itg2gt0 23527 itg2cnlem1 23528 aaliou3lem7 24104 emcllem1 24722 emcllem2 24723 emcllem3 24724 emcllem5 24726 emcllem6 24727 emcllem7 24728 zetacvg 24741 lgam1 24790 bclbnd 25005 bposlem5 25013 2sqlem10 25153 dchrisumlem2 25179 logdivbnd 25245 pntrsumo1 25254 pntrsumbnd 25255 wwlksext2clwwlk 26924 numclwwlk2lem1 27235 numclwlk2lem2f 27236 opsqrlem5 29003 opsqrlem6 29004 nnindf 29565 psgnfzto1st 29855 esumpmono 30141 fibp1 30463 rrvsum 30516 subfacp1lem6 31167 subfaclim 31170 bcprod 31624 bccolsum 31625 iprodgam 31628 faclimlem1 31629 faclimlem2 31630 faclim2 31634 nn0prpwlem 32317 mblfinlem2 33447 volsupnfl 33454 seqpo 33543 incsequz 33544 incsequz2 33545 geomcau 33555 heiborlem6 33615 bfplem1 33621 jm2.27dlem4 37579 nnsplit 39574 sumnnodd 39862 stoweidlem20 40237 wallispilem4 40285 wallispi2lem1 40288 wallispi2lem2 40289 stirlinglem4 40294 stirlinglem8 40298 stirlinglem11 40301 stirlinglem12 40302 stirlinglem13 40303 vonioolem2 40895 vonicclem2 40898 deccarry 41321 iccpartres 41354 iccelpart 41369 odz2prm2pw 41475 fmtnoprmfac1 41477 fmtnoprmfac2 41479 lighneallem4 41527 |
Copyright terms: Public domain | W3C validator |