MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivdiv Structured version   Visualization version   GIF version

Theorem divdivdiv 10726
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divdivdiv (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))

Proof of Theorem divdivdiv
StepHypRef Expression
1 simprrl 804 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐷 ∈ ℂ)
2 simprll 802 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐶 ∈ ℂ)
3 simprlr 803 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐶 ≠ 0)
4 divcl 10691 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐷 / 𝐶) ∈ ℂ)
51, 2, 3, 4syl3anc 1326 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐷 / 𝐶) ∈ ℂ)
6 simpll 790 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐴 ∈ ℂ)
7 simplrl 800 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐵 ∈ ℂ)
8 simplrr 801 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐵 ≠ 0)
9 divcl 10691 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℂ)
106, 7, 8, 9syl3anc 1326 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐴 / 𝐵) ∈ ℂ)
115, 10mulcomd 10061 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 / 𝐵) · (𝐷 / 𝐶)))
12 simplr 792 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
13 simprl 794 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
14 divmuldiv 10725 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
156, 1, 12, 13, 14syl22anc 1327 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) · (𝐷 / 𝐶)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
1611, 15eqtrd 2656 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐷 / 𝐶) · (𝐴 / 𝐵)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
1716oveq2d 6666 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))))
18 simprr 796 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
19 divmuldiv 10725 . . . . . . 7 (((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶)))
202, 1, 18, 13, 19syl22anc 1327 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = ((𝐶 · 𝐷) / (𝐷 · 𝐶)))
212, 1mulcomd 10061 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
2221oveq1d 6665 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = ((𝐷 · 𝐶) / (𝐷 · 𝐶)))
231, 2mulcld 10060 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐷 · 𝐶) ∈ ℂ)
24 simprrr 805 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → 𝐷 ≠ 0)
251, 2, 24, 3mulne0d 10679 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐷 · 𝐶) ≠ 0)
26 divid 10714 . . . . . . . 8 (((𝐷 · 𝐶) ∈ ℂ ∧ (𝐷 · 𝐶) ≠ 0) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1)
2723, 25, 26syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐷 · 𝐶) / (𝐷 · 𝐶)) = 1)
2822, 27eqtrd 2656 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 · 𝐷) / (𝐷 · 𝐶)) = 1)
2920, 28eqtrd 2656 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 / 𝐷) · (𝐷 / 𝐶)) = 1)
3029oveq1d 6665 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = (1 · (𝐴 / 𝐵)))
31 divcl 10691 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → (𝐶 / 𝐷) ∈ ℂ)
322, 1, 24, 31syl3anc 1326 . . . . 5 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐶 / 𝐷) ∈ ℂ)
3332, 5, 10mulassd 10063 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐶 / 𝐷) · (𝐷 / 𝐶)) · (𝐴 / 𝐵)) = ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))))
3410mulid2d 10058 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (1 · (𝐴 / 𝐵)) = (𝐴 / 𝐵))
3530, 33, 343eqtr3d 2664 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 / 𝐷) · ((𝐷 / 𝐶) · (𝐴 / 𝐵))) = (𝐴 / 𝐵))
3617, 35eqtr3d 2658 . 2 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵))
376, 1mulcld 10060 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐴 · 𝐷) ∈ ℂ)
387, 2mulcld 10060 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 · 𝐶) ∈ ℂ)
39 mulne0 10669 . . . . 5 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 · 𝐶) ≠ 0)
4039ad2ant2lr 784 . . . 4 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐵 · 𝐶) ≠ 0)
41 divcl 10691 . . . 4 (((𝐴 · 𝐷) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ ∧ (𝐵 · 𝐶) ≠ 0) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ)
4237, 38, 40, 41syl3anc 1326 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ)
43 divne0 10697 . . . 4 (((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)) → (𝐶 / 𝐷) ≠ 0)
4443adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (𝐶 / 𝐷) ≠ 0)
45 divmul 10688 . . 3 (((𝐴 / 𝐵) ∈ ℂ ∧ ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ∈ ℂ ∧ ((𝐶 / 𝐷) ∈ ℂ ∧ (𝐶 / 𝐷) ≠ 0)) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵)))
4610, 42, 32, 44, 45syl112anc 1330 . 2 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → (((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) ↔ ((𝐶 / 𝐷) · ((𝐴 · 𝐷) / (𝐵 · 𝐶))) = (𝐴 / 𝐵)))
4736, 46mpbird 247 1 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941   / cdiv 10684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685
This theorem is referenced by:  recdiv  10731  divcan7  10734  divdiv1  10736  divdiv2  10737  divdivdivi  10788  divdivdivd  10848  qreccl  11808  pnt2  25302
  Copyright terms: Public domain W3C validator