MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Structured version   Visualization version   GIF version

Theorem dmrecnq 9790
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq dom *Q = Q

Proof of Theorem dmrecnq
StepHypRef Expression
1 df-rq 9739 . . . . . 6 *Q = ( ·Q “ {1Q})
2 cnvimass 5485 . . . . . 6 ( ·Q “ {1Q}) ⊆ dom ·Q
31, 2eqsstri 3635 . . . . 5 *Q ⊆ dom ·Q
4 mulnqf 9771 . . . . . 6 ·Q :(Q × Q)⟶Q
54fdmi 6052 . . . . 5 dom ·Q = (Q × Q)
63, 5sseqtri 3637 . . . 4 *Q ⊆ (Q × Q)
7 dmss 5323 . . . 4 (*Q ⊆ (Q × Q) → dom *Q ⊆ dom (Q × Q))
86, 7ax-mp 5 . . 3 dom *Q ⊆ dom (Q × Q)
9 dmxpid 5345 . . 3 dom (Q × Q) = Q
108, 9sseqtri 3637 . 2 dom *QQ
11 recclnq 9788 . . . . . . . 8 (𝑥Q → (*Q𝑥) ∈ Q)
12 opelxpi 5148 . . . . . . . 8 ((𝑥Q ∧ (*Q𝑥) ∈ Q) → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
1311, 12mpdan 702 . . . . . . 7 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q))
14 df-ov 6653 . . . . . . . 8 (𝑥 ·Q (*Q𝑥)) = ( ·Q ‘⟨𝑥, (*Q𝑥)⟩)
15 recidnq 9787 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1614, 15syl5eqr 2670 . . . . . . 7 (𝑥Q → ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)
17 ffn 6045 . . . . . . . 8 ( ·Q :(Q × Q)⟶Q → ·Q Fn (Q × Q))
18 fniniseg 6338 . . . . . . . 8 ( ·Q Fn (Q × Q) → (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q)))
194, 17, 18mp2b 10 . . . . . . 7 (⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}) ↔ (⟨𝑥, (*Q𝑥)⟩ ∈ (Q × Q) ∧ ( ·Q ‘⟨𝑥, (*Q𝑥)⟩) = 1Q))
2013, 16, 19sylanbrc 698 . . . . . 6 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ ( ·Q “ {1Q}))
2120, 1syl6eleqr 2712 . . . . 5 (𝑥Q → ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
22 df-br 4654 . . . . 5 (𝑥*Q(*Q𝑥) ↔ ⟨𝑥, (*Q𝑥)⟩ ∈ *Q)
2321, 22sylibr 224 . . . 4 (𝑥Q𝑥*Q(*Q𝑥))
24 vex 3203 . . . . 5 𝑥 ∈ V
25 fvex 6201 . . . . 5 (*Q𝑥) ∈ V
2624, 25breldm 5329 . . . 4 (𝑥*Q(*Q𝑥) → 𝑥 ∈ dom *Q)
2723, 26syl 17 . . 3 (𝑥Q𝑥 ∈ dom *Q)
2827ssriv 3607 . 2 Q ⊆ dom *Q
2910, 28eqssi 3619 1 dom *Q = Q
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  {csn 4177  cop 4183   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Qcnq 9674  1Qc1q 9675   ·Q cmq 9678  *Qcrq 9679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-rq 9739
This theorem is referenced by:  ltrnq  9801  reclem2pr  9870
  Copyright terms: Public domain W3C validator