MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrecnq Structured version   Visualization version   Unicode version

Theorem dmrecnq 9790
Description: Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
dmrecnq  |-  dom  *Q  =  Q.

Proof of Theorem dmrecnq
StepHypRef Expression
1 df-rq 9739 . . . . . 6  |-  *Q  =  ( `'  .Q  " { 1Q } )
2 cnvimass 5485 . . . . . 6  |-  ( `'  .Q  " { 1Q } )  C_  dom  .Q
31, 2eqsstri 3635 . . . . 5  |-  *Q  C_  dom  .Q
4 mulnqf 9771 . . . . . 6  |-  .Q  :
( Q.  X.  Q. )
--> Q.
54fdmi 6052 . . . . 5  |-  dom  .Q  =  ( Q.  X.  Q. )
63, 5sseqtri 3637 . . . 4  |-  *Q  C_  ( Q.  X.  Q. )
7 dmss 5323 . . . 4  |-  ( *Q  C_  ( Q.  X.  Q. )  ->  dom  *Q  C_  dom  ( Q.  X.  Q. )
)
86, 7ax-mp 5 . . 3  |-  dom  *Q  C_ 
dom  ( Q.  X.  Q. )
9 dmxpid 5345 . . 3  |-  dom  ( Q.  X.  Q. )  =  Q.
108, 9sseqtri 3637 . 2  |-  dom  *Q  C_ 
Q.
11 recclnq 9788 . . . . . . . 8  |-  ( x  e.  Q.  ->  ( *Q `  x )  e. 
Q. )
12 opelxpi 5148 . . . . . . . 8  |-  ( ( x  e.  Q.  /\  ( *Q `  x )  e.  Q. )  ->  <. x ,  ( *Q
`  x ) >.  e.  ( Q.  X.  Q. ) )
1311, 12mpdan 702 . . . . . . 7  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )
)
14 df-ov 6653 . . . . . . . 8  |-  ( x  .Q  ( *Q `  x ) )  =  (  .Q  `  <. x ,  ( *Q `  x ) >. )
15 recidnq 9787 . . . . . . . 8  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
1614, 15syl5eqr 2670 . . . . . . 7  |-  ( x  e.  Q.  ->  (  .Q  `  <. x ,  ( *Q `  x )
>. )  =  1Q )
17 ffn 6045 . . . . . . . 8  |-  (  .Q  : ( Q.  X.  Q. ) --> Q.  ->  .Q  Fn  ( Q.  X.  Q. )
)
18 fniniseg 6338 . . . . . . . 8  |-  (  .Q  Fn  ( Q.  X.  Q. )  ->  ( <.
x ,  ( *Q
`  x ) >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  ( *Q `  x ) >. )  =  1Q ) ) )
194, 17, 18mp2b 10 . . . . . . 7  |-  ( <.
x ,  ( *Q
`  x ) >.  e.  ( `'  .Q  " { 1Q } )  <->  ( <. x ,  ( *Q `  x ) >.  e.  ( Q.  X.  Q. )  /\  (  .Q  `  <. x ,  ( *Q `  x ) >. )  =  1Q ) )
2013, 16, 19sylanbrc 698 . . . . . 6  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  ( `'  .Q  " { 1Q } ) )
2120, 1syl6eleqr 2712 . . . . 5  |-  ( x  e.  Q.  ->  <. x ,  ( *Q `  x ) >.  e.  *Q )
22 df-br 4654 . . . . 5  |-  ( x *Q ( *Q `  x )  <->  <. x ,  ( *Q `  x
) >.  e.  *Q )
2321, 22sylibr 224 . . . 4  |-  ( x  e.  Q.  ->  x *Q ( *Q `  x
) )
24 vex 3203 . . . . 5  |-  x  e. 
_V
25 fvex 6201 . . . . 5  |-  ( *Q
`  x )  e. 
_V
2624, 25breldm 5329 . . . 4  |-  ( x *Q ( *Q `  x )  ->  x  e.  dom  *Q )
2723, 26syl 17 . . 3  |-  ( x  e.  Q.  ->  x  e.  dom  *Q )
2827ssriv 3607 . 2  |-  Q.  C_  dom  *Q
2910, 28eqssi 3619 1  |-  dom  *Q  =  Q.
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   {csn 4177   <.cop 4183   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   Q.cnq 9674   1Qc1q 9675    .Q cmq 9678   *Qcrq 9679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-rq 9739
This theorem is referenced by:  ltrnq  9801  reclem2pr  9870
  Copyright terms: Public domain W3C validator