![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensymi | Structured version Visualization version GIF version |
Description: Symmetry of equinumerosity. Theorem 2 of [Suppes] p. 92. (Contributed by NM, 25-Sep-2004.) |
Ref | Expression |
---|---|
ensymi.2 | ⊢ 𝐴 ≈ 𝐵 |
Ref | Expression |
---|---|
ensymi | ⊢ 𝐵 ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymi.2 | . 2 ⊢ 𝐴 ≈ 𝐵 | |
2 | ensym 8005 | . 2 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐵 ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4653 ≈ cen 7952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-er 7742 df-en 7956 |
This theorem is referenced by: entr2i 8011 entr3i 8012 entr4i 8013 pm54.43 8826 infxpenlem 8836 ackbij1lem5 9046 unsnen 9375 cfpwsdom 9406 tskinf 9591 inar1 9597 gruina 9640 uzenom 12763 znnen 14941 qnnen 14942 rexpen 14957 rucALT 14959 aleph1re 14974 aleph1irr 14975 unben 15613 1stcfb 21248 2ndcredom 21253 hauspwdom 21304 met1stc 22326 ovolctb2 23260 ovolfi 23262 ovoliunlem3 23272 uniiccdif 23346 dyadmbl 23368 mbfimaopnlem 23422 aannenlem3 24085 f1ocnt 29559 dmvlsiga 30192 sigapildsys 30225 omssubadd 30362 carsgclctunlem3 30382 pellex 37399 nnfoctb 39213 nnf1oxpnn 39384 ioonct 39764 caragenunicl 40738 aacllem 42547 |
Copyright terms: Public domain | W3C validator |