MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Structured version   Visualization version   GIF version

Theorem ovoliunlem3 23272
Description: Lemma for ovoliun 23273. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t 𝑇 = seq1( + , 𝐺)
ovoliun.g 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
ovoliun.a ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
ovoliun.v ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
ovoliun.r (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
ovoliun.b (𝜑𝐵 ∈ ℝ+)
Assertion
Ref Expression
ovoliunlem3 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Distinct variable groups:   𝐵,𝑛   𝜑,𝑛   𝑛,𝐺   𝑇,𝑛
Allowed substitution hint:   𝐴(𝑛)

Proof of Theorem ovoliunlem3
Dummy variables 𝑓 𝑔 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . 4 𝑚𝐴
2 nfcsb1v 3549 . . . 4 𝑛𝑚 / 𝑛𝐴
3 csbeq1a 3542 . . . 4 (𝑛 = 𝑚𝐴 = 𝑚 / 𝑛𝐴)
41, 2, 3cbviun 4557 . . 3 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴
54fveq2i 6194 . 2 (vol*‘ 𝑛 ∈ ℕ 𝐴) = (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴)
6 ovoliun.a . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
7 ovoliun.v . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (vol*‘𝐴) ∈ ℝ)
8 ovoliun.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
9 2nn 11185 . . . . . . . . 9 2 ∈ ℕ
10 nnnn0 11299 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
11 nnexpcl 12873 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
129, 10, 11sylancr 695 . . . . . . . 8 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℕ)
1312nnrpd 11870 . . . . . . 7 (𝑛 ∈ ℕ → (2↑𝑛) ∈ ℝ+)
14 rpdivcl 11856 . . . . . . 7 ((𝐵 ∈ ℝ+ ∧ (2↑𝑛) ∈ ℝ+) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
158, 13, 14syl2an 494 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈ ℝ+)
16 eqid 2622 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
1716ovolgelb 23248 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ ∧ (𝐵 / (2↑𝑛)) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
186, 7, 15, 17syl3anc 1326 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
1918ralrimiva 2966 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
20 ovex 6678 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∈ V
21 nnenom 12779 . . . . 5 ℕ ≈ ω
22 coeq2 5280 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → ((,) ∘ 𝑓) = ((,) ∘ (𝑔𝑛)))
2322rneqd 5353 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2423unieqd 4446 . . . . . . 7 (𝑓 = (𝑔𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔𝑛)))
2524sseq2d 3633 . . . . . 6 (𝑓 = (𝑔𝑛) → (𝐴 ran ((,) ∘ 𝑓) ↔ 𝐴 ran ((,) ∘ (𝑔𝑛))))
26 coeq2 5280 . . . . . . . . . 10 (𝑓 = (𝑔𝑛) → ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ (𝑔𝑛)))
2726seqeq3d 12809 . . . . . . . . 9 (𝑓 = (𝑔𝑛) → seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2827rneqd 5353 . . . . . . . 8 (𝑓 = (𝑔𝑛) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))))
2928supeq1d 8352 . . . . . . 7 (𝑓 = (𝑔𝑛) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ))
3029breq1d 4663 . . . . . 6 (𝑓 = (𝑔𝑛) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
3125, 30anbi12d 747 . . . . 5 (𝑓 = (𝑔𝑛) → ((𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3220, 21, 31axcc4 9261 . . . 4 (∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
3319, 32syl 17 . . 3 (𝜑 → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))))
34 xpnnen 14939 . . . . . . 7 (ℕ × ℕ) ≈ ℕ
3534ensymi 8006 . . . . . 6 ℕ ≈ (ℕ × ℕ)
36 bren 7964 . . . . . 6 (ℕ ≈ (ℕ × ℕ) ↔ ∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
3735, 36mpbi 220 . . . . 5 𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ)
38 ovoliun.t . . . . . . . 8 𝑇 = seq1( + , 𝐺)
39 ovoliun.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴))
40 nfcv 2764 . . . . . . . . . 10 𝑚(vol*‘𝐴)
41 nfcv 2764 . . . . . . . . . . 11 𝑛vol*
4241, 2nffv 6198 . . . . . . . . . 10 𝑛(vol*‘𝑚 / 𝑛𝐴)
433fveq2d 6195 . . . . . . . . . 10 (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘𝑚 / 𝑛𝐴))
4440, 42, 43cbvmpt 4749 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
4539, 44eqtri 2644 . . . . . . . 8 𝐺 = (𝑚 ∈ ℕ ↦ (vol*‘𝑚 / 𝑛𝐴))
46 simpll 790 . . . . . . . . 9 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝜑)
476ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ)
48 nfv 1843 . . . . . . . . . . . 12 𝑚 𝐴 ⊆ ℝ
49 nfcv 2764 . . . . . . . . . . . . 13 𝑛
502, 49nfss 3596 . . . . . . . . . . . 12 𝑛𝑚 / 𝑛𝐴 ⊆ ℝ
513sseq1d 3632 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛𝐴 ⊆ ℝ))
5248, 50, 51cbvral 3167 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5347, 52sylib 208 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ 𝑚 / 𝑛𝐴 ⊆ ℝ)
5453r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
5546, 54sylan 488 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ⊆ ℝ)
567ralrimiva 2966 . . . . . . . . . . 11 (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ)
5740nfel1 2779 . . . . . . . . . . . 12 𝑚(vol*‘𝐴) ∈ ℝ
5842nfel1 2779 . . . . . . . . . . . 12 𝑛(vol*‘𝑚 / 𝑛𝐴) ∈ ℝ
5943eleq1d 2686 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ))
6057, 58, 59cbvral 3167 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ ↔ ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6156, 60sylib 208 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ ℕ (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6261r19.21bi 2932 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
6346, 62sylan 488 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (vol*‘𝑚 / 𝑛𝐴) ∈ ℝ)
64 ovoliun.r . . . . . . . . 9 (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
6564ad2antrr 762 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → sup(ran 𝑇, ℝ*, < ) ∈ ℝ)
668ad2antrr 762 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝐵 ∈ ℝ+)
67 eqid 2622 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚)))
68 eqid 2622 . . . . . . . 8 seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))))) = seq1( + , ((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))))
69 eqid 2622 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘)))) = (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗𝑘)))‘(2nd ‘(𝑗𝑘))))
70 simplr 792 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑗:ℕ–1-1-onto→(ℕ × ℕ))
71 simprl 794 . . . . . . . 8 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
72 simprr 796 . . . . . . . . . . 11 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))
73 nfv 1843 . . . . . . . . . . . 12 𝑚(𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))
74 nfcv 2764 . . . . . . . . . . . . . 14 𝑛 ran ((,) ∘ (𝑔𝑚))
752, 74nfss 3596 . . . . . . . . . . . . 13 𝑛𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))
76 nfcv 2764 . . . . . . . . . . . . . 14 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < )
77 nfcv 2764 . . . . . . . . . . . . . 14 𝑛
78 nfcv 2764 . . . . . . . . . . . . . . 15 𝑛 +
79 nfcv 2764 . . . . . . . . . . . . . . 15 𝑛(𝐵 / (2↑𝑚))
8042, 78, 79nfov 6676 . . . . . . . . . . . . . 14 𝑛((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8176, 77, 80nfbr 4699 . . . . . . . . . . . . 13 𝑛sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))
8275, 81nfan 1828 . . . . . . . . . . . 12 𝑛(𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
83 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
8483coeq2d 5284 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → ((,) ∘ (𝑔𝑛)) = ((,) ∘ (𝑔𝑚)))
8584rneqd 5353 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
8685unieqd 4446 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 ran ((,) ∘ (𝑔𝑛)) = ran ((,) ∘ (𝑔𝑚)))
873, 86sseq12d 3634 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (𝐴 ran ((,) ∘ (𝑔𝑛)) ↔ 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚))))
8883coeq2d 5284 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((abs ∘ − ) ∘ (𝑔𝑛)) = ((abs ∘ − ) ∘ (𝑔𝑚)))
8988seqeq3d 12809 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
9089rneqd 5353 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))) = ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))))
9190supeq1d 8352 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ))
92 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚))
9392oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐵 / (2↑𝑛)) = (𝐵 / (2↑𝑚)))
9443, 93oveq12d 6668 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
9591, 94breq12d 4666 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9687, 95anbi12d 747 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))))
9773, 82, 96cbvral 3167 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9872, 97sylib 208 . . . . . . . . . 10 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑚 ∈ ℕ (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
9998r19.21bi 2932 . . . . . . . . 9 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚)))))
10099simpld 475 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → 𝑚 / 𝑛𝐴 ran ((,) ∘ (𝑔𝑚)))
10199simprd 479 . . . . . . . 8 ((((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑚))), ℝ*, < ) ≤ ((vol*‘𝑚 / 𝑛𝐴) + (𝐵 / (2↑𝑚))))
10238, 45, 55, 63, 65, 66, 67, 68, 69, 70, 71, 100, 101ovoliunlem2 23271 . . . . . . 7 (((𝜑𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
103102exp31 630 . . . . . 6 (𝜑 → (𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
104103exlimdv 1861 . . . . 5 (𝜑 → (∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))))
10537, 104mpi 20 . . . 4 (𝜑 → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
106105exlimdv 1861 . . 3 (𝜑 → (∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ran ((,) ∘ (𝑔𝑛)) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ (𝑔𝑛))), ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))
10733, 106mpd 15 . 2 (𝜑 → (vol*‘ 𝑚 ∈ ℕ 𝑚 / 𝑛𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
1085, 107syl5eqbr 4688 1 (𝜑 → (vol*‘ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  csb 3533  cin 3573  wss 3574   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  ran crn 5115  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  cen 7952  supcsup 8346  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  +crp 11832  (,)cioo 12175  seqcseq 12801  cexp 12860  abscabs 13974  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovoliun  23273
  Copyright terms: Public domain W3C validator