| Step | Hyp | Ref
| Expression |
| 1 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑚𝐴 |
| 2 | | nfcsb1v 3549 |
. . . 4
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 |
| 3 | | csbeq1a 3542 |
. . . 4
⊢ (𝑛 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑛⦌𝐴) |
| 4 | 1, 2, 3 | cbviun 4557 |
. . 3
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑚 ∈ ℕ
⦋𝑚 / 𝑛⦌𝐴 |
| 5 | 4 | fveq2i 6194 |
. 2
⊢
(vol*‘∪ 𝑛 ∈ ℕ 𝐴) = (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) |
| 6 | | ovoliun.a |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) |
| 7 | | ovoliun.v |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (vol*‘𝐴) ∈
ℝ) |
| 8 | | ovoliun.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 9 | | 2nn 11185 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 10 | | nnnn0 11299 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 11 | | nnexpcl 12873 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑛
∈ ℕ0) → (2↑𝑛) ∈ ℕ) |
| 12 | 9, 10, 11 | sylancr 695 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
| 13 | 12 | nnrpd 11870 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ+) |
| 14 | | rpdivcl 11856 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ+
∧ (2↑𝑛) ∈
ℝ+) → (𝐵 / (2↑𝑛)) ∈
ℝ+) |
| 15 | 8, 13, 14 | syl2an 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 / (2↑𝑛)) ∈
ℝ+) |
| 16 | | eqid 2622 |
. . . . . . 7
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
| 17 | 16 | ovolgelb 23248 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ (𝐵 /
(2↑𝑛)) ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) |
| 18 | 6, 7, 15, 17 | syl3anc 1326 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) |
| 19 | 18 | ralrimiva 2966 |
. . . 4
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) |
| 20 | | ovex 6678 |
. . . . 5
⊢ (( ≤
∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∈
V |
| 21 | | nnenom 12779 |
. . . . 5
⊢ ℕ
≈ ω |
| 22 | | coeq2 5280 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔‘𝑛) → ((,) ∘ 𝑓) = ((,) ∘ (𝑔‘𝑛))) |
| 23 | 22 | rneqd 5353 |
. . . . . . . 8
⊢ (𝑓 = (𝑔‘𝑛) → ran ((,) ∘ 𝑓) = ran ((,) ∘ (𝑔‘𝑛))) |
| 24 | 23 | unieqd 4446 |
. . . . . . 7
⊢ (𝑓 = (𝑔‘𝑛) → ∪ ran
((,) ∘ 𝑓) = ∪ ran ((,) ∘ (𝑔‘𝑛))) |
| 25 | 24 | sseq2d 3633 |
. . . . . 6
⊢ (𝑓 = (𝑔‘𝑛) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ↔
𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)))) |
| 26 | | coeq2 5280 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔‘𝑛) → ((abs ∘ − ) ∘
𝑓) = ((abs ∘ −
) ∘ (𝑔‘𝑛))) |
| 27 | 26 | seqeq3d 12809 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔‘𝑛) → seq1( + , ((abs ∘ − )
∘ 𝑓)) = seq1( + ,
((abs ∘ − ) ∘ (𝑔‘𝑛)))) |
| 28 | 27 | rneqd 5353 |
. . . . . . . 8
⊢ (𝑓 = (𝑔‘𝑛) → ran seq1( + , ((abs ∘ −
) ∘ 𝑓)) = ran seq1( +
, ((abs ∘ − ) ∘ (𝑔‘𝑛)))) |
| 29 | 28 | supeq1d 8352 |
. . . . . . 7
⊢ (𝑓 = (𝑔‘𝑛) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) = sup(ran seq1( + , ((abs ∘ − ) ∘
(𝑔‘𝑛))), ℝ*, <
)) |
| 30 | 29 | breq1d 4663 |
. . . . . 6
⊢ (𝑓 = (𝑔‘𝑛) → (sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) |
| 31 | 25, 30 | anbi12d 747 |
. . . . 5
⊢ (𝑓 = (𝑔‘𝑛) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) |
| 32 | 20, 21, 31 | axcc4 9261 |
. . . 4
⊢
(∀𝑛 ∈
ℕ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) |
| 33 | 19, 32 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) |
| 34 | | xpnnen 14939 |
. . . . . . 7
⊢ (ℕ
× ℕ) ≈ ℕ |
| 35 | 34 | ensymi 8006 |
. . . . . 6
⊢ ℕ
≈ (ℕ × ℕ) |
| 36 | | bren 7964 |
. . . . . 6
⊢ (ℕ
≈ (ℕ × ℕ) ↔ ∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) |
| 37 | 35, 36 | mpbi 220 |
. . . . 5
⊢
∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) |
| 38 | | ovoliun.t |
. . . . . . . 8
⊢ 𝑇 = seq1( + , 𝐺) |
| 39 | | ovoliun.g |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol*‘𝐴)) |
| 40 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(vol*‘𝐴) |
| 41 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛vol* |
| 42 | 41, 2 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(vol*‘⦋𝑚 / 𝑛⦌𝐴) |
| 43 | 3 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (vol*‘𝐴) = (vol*‘⦋𝑚 / 𝑛⦌𝐴)) |
| 44 | 40, 42, 43 | cbvmpt 4749 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦
(vol*‘𝐴)) = (𝑚 ∈ ℕ ↦
(vol*‘⦋𝑚 / 𝑛⦌𝐴)) |
| 45 | 39, 44 | eqtri 2644 |
. . . . . . . 8
⊢ 𝐺 = (𝑚 ∈ ℕ ↦
(vol*‘⦋𝑚 / 𝑛⦌𝐴)) |
| 46 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝜑) |
| 47 | 6 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ 𝐴 ⊆ ℝ) |
| 48 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚 𝐴 ⊆
ℝ |
| 49 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛ℝ |
| 50 | 2, 49 | nfss 3596 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ⊆ ℝ |
| 51 | 3 | sseq1d 3632 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝐴 ⊆ ℝ ↔ ⦋𝑚 / 𝑛⦌𝐴 ⊆ ℝ)) |
| 52 | 48, 50, 51 | cbvral 3167 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ 𝐴 ⊆ ℝ
↔ ∀𝑚 ∈
ℕ ⦋𝑚 /
𝑛⦌𝐴 ⊆
ℝ) |
| 53 | 47, 52 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴 ⊆ ℝ) |
| 54 | 53 | r19.21bi 2932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ⦋𝑚 / 𝑛⦌𝐴 ⊆ ℝ) |
| 55 | 46, 54 | sylan 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → ⦋𝑚 / 𝑛⦌𝐴 ⊆ ℝ) |
| 56 | 7 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ ℕ (vol*‘𝐴) ∈ ℝ) |
| 57 | 40 | nfel1 2779 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚(vol*‘𝐴) ∈ ℝ |
| 58 | 42 | nfel1 2779 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ |
| 59 | 43 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((vol*‘𝐴) ∈ ℝ ↔
(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ)) |
| 60 | 57, 58, 59 | cbvral 3167 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (vol*‘𝐴)
∈ ℝ ↔ ∀𝑚 ∈ ℕ
(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ) |
| 61 | 56, 60 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ ℕ
(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ) |
| 62 | 61 | r19.21bi 2932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ) |
| 63 | 46, 62 | sylan 488 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) →
(vol*‘⦋𝑚 / 𝑛⦌𝐴) ∈ ℝ) |
| 64 | | ovoliun.r |
. . . . . . . . 9
⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
| 65 | 64 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → sup(ran 𝑇, ℝ*, < ) ∈
ℝ) |
| 66 | 8 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝐵 ∈
ℝ+) |
| 67 | | eqid 2622 |
. . . . . . . 8
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑔‘𝑚))) = seq1( + , ((abs ∘ − )
∘ (𝑔‘𝑚))) |
| 68 | | eqid 2622 |
. . . . . . . 8
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗‘𝑘)))‘(2nd ‘(𝑗‘𝑘)))))) = seq1( + , ((abs ∘ − )
∘ (𝑘 ∈ ℕ
↦ ((𝑔‘(1st ‘(𝑗‘𝑘)))‘(2nd ‘(𝑗‘𝑘)))))) |
| 69 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ ↦ ((𝑔‘(1st
‘(𝑗‘𝑘)))‘(2nd
‘(𝑗‘𝑘)))) = (𝑘 ∈ ℕ ↦ ((𝑔‘(1st ‘(𝑗‘𝑘)))‘(2nd ‘(𝑗‘𝑘)))) |
| 70 | | simplr 792 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) |
| 71 | | simprl 794 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → 𝑔:ℕ⟶(( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ)) |
| 72 | | simprr 796 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑛 ∈ ℕ (𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) |
| 73 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) |
| 74 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛∪ ran ((,) ∘ (𝑔‘𝑚)) |
| 75 | 2, 74 | nfss 3596 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) |
| 76 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛sup(ran seq1( + , ((abs ∘ − )
∘ (𝑔‘𝑚))), ℝ*, <
) |
| 77 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛
≤ |
| 78 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛
+ |
| 79 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝐵 / (2↑𝑚)) |
| 80 | 42, 78, 79 | nfov 6676 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))) |
| 81 | 76, 77, 80 | nfbr 4699 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛sup(ran
seq1( + , ((abs ∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))) |
| 82 | 75, 81 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚)))) |
| 83 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (𝑔‘𝑛) = (𝑔‘𝑚)) |
| 84 | 83 | coeq2d 5284 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((,) ∘ (𝑔‘𝑛)) = ((,) ∘ (𝑔‘𝑚))) |
| 85 | 84 | rneqd 5353 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ran ((,) ∘ (𝑔‘𝑛)) = ran ((,) ∘ (𝑔‘𝑚))) |
| 86 | 85 | unieqd 4446 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ∪ ran ((,)
∘ (𝑔‘𝑛)) = ∪ ran ((,) ∘ (𝑔‘𝑚))) |
| 87 | 3, 86 | sseq12d 3634 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑛)) ↔ ⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)))) |
| 88 | 83 | coeq2d 5284 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → ((abs ∘ − ) ∘
(𝑔‘𝑛)) = ((abs ∘ − ) ∘ (𝑔‘𝑚))) |
| 89 | 88 | seqeq3d 12809 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → seq1( + , ((abs ∘ − )
∘ (𝑔‘𝑛))) = seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑚)))) |
| 90 | 89 | rneqd 5353 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ran seq1( + , ((abs ∘ − )
∘ (𝑔‘𝑛))) = ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚)))) |
| 91 | 90 | supeq1d 8352 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) = sup(ran
seq1( + , ((abs ∘ − ) ∘ (𝑔‘𝑚))), ℝ*, <
)) |
| 92 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (2↑𝑛) = (2↑𝑚)) |
| 93 | 92 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝐵 / (2↑𝑛)) = (𝐵 / (2↑𝑚))) |
| 94 | 43, 93 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((vol*‘𝐴) + (𝐵 / (2↑𝑛))) = ((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚)))) |
| 95 | 91, 94 | breq12d 4666 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))) ↔ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))))) |
| 96 | 87, 95 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ (⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚)))))) |
| 97 | 73, 82, 96 | cbvral 3167 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ (𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))) ↔ ∀𝑚 ∈ ℕ (⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))))) |
| 98 | 72, 97 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → ∀𝑚 ∈ ℕ (⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))))) |
| 99 | 98 | r19.21bi 2932 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → (⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚)) ∧ sup(ran seq1( + , ((abs
∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚))))) |
| 100 | 99 | simpld 475 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → ⦋𝑚 / 𝑛⦌𝐴 ⊆ ∪ ran
((,) ∘ (𝑔‘𝑚))) |
| 101 | 99 | simprd 479 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) ∧ 𝑚 ∈ ℕ) → sup(ran seq1( + ,
((abs ∘ − ) ∘ (𝑔‘𝑚))), ℝ*, < ) ≤
((vol*‘⦋𝑚 / 𝑛⦌𝐴) + (𝐵 / (2↑𝑚)))) |
| 102 | 38, 45, 55, 63, 65, 66, 67, 68, 69, 70, 71, 100, 101 | ovoliunlem2 23271 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗:ℕ–1-1-onto→(ℕ × ℕ)) ∧ (𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛)))))) → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) |
| 103 | 102 | exp31 630 |
. . . . . 6
⊢ (𝜑 → (𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))) |
| 104 | 103 | exlimdv 1861 |
. . . . 5
⊢ (𝜑 → (∃𝑗 𝑗:ℕ–1-1-onto→(ℕ × ℕ) → ((𝑔:ℕ⟶(( ≤ ∩
(ℝ × ℝ)) ↑𝑚 ℕ) ∧
∀𝑛 ∈ ℕ
(𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)))) |
| 105 | 37, 104 | mpi 20 |
. . . 4
⊢ (𝜑 → ((𝑔:ℕ⟶(( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))) |
| 106 | 105 | exlimdv 1861 |
. . 3
⊢ (𝜑 → (∃𝑔(𝑔:ℕ⟶(( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐴 ⊆ ∪ ran ((,) ∘ (𝑔‘𝑛)) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ (𝑔‘𝑛))), ℝ*, < ) ≤
((vol*‘𝐴) + (𝐵 / (2↑𝑛))))) → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵))) |
| 107 | 33, 106 | mpd 15 |
. 2
⊢ (𝜑 → (vol*‘∪ 𝑚 ∈ ℕ ⦋𝑚 / 𝑛⦌𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) |
| 108 | 5, 107 | syl5eqbr 4688 |
1
⊢ (𝜑 → (vol*‘∪ 𝑛 ∈ ℕ 𝐴) ≤ (sup(ran 𝑇, ℝ*, < ) + 𝐵)) |