| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 2 | | equivcau.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 3 | 2 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈
ℝ+) |
| 4 | 1, 3 | rpdivcld 11889 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈
ℝ+) |
| 5 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) |
| 6 | 5 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
| 7 | 6 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 / 𝑅) → (∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 ↔ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
| 8 | 7 | rspcv 3305 |
. . . . . . 7
⊢ ((𝑟 / 𝑅) ∈ ℝ+ →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
| 9 | 4, 8 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓)) |
| 10 | | simpllr 799 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑓 ∈ (Fil‘𝑋)) |
| 11 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(MetOpen‘𝐶) =
(MetOpen‘𝐶) |
| 12 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
| 13 | | equivcau.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
| 14 | | equivcau.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 15 | | equivcau.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
| 16 | 11, 12, 13, 14, 2, 15 | metss2lem 22316 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 17 | 16 | ancom2s 844 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 18 | 17 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ (𝑟 ∈ ℝ+ ∧ 𝑥 ∈ 𝑋)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 19 | 18 | anassrs 680 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
| 20 | 13 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (Met‘𝑋)) |
| 21 | | metxmet 22139 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ (∞Met‘𝑋)) |
| 23 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 24 | | rpxr 11840 |
. . . . . . . . . 10
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
| 25 | 24 | ad2antlr 763 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → 𝑟 ∈ ℝ*) |
| 26 | | blssm 22223 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋) |
| 27 | 22, 23, 25, 26 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋) |
| 28 | | filss 21657 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓) |
| 29 | 28 | 3exp2 1285 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))) |
| 30 | 29 | com24 95 |
. . . . . . . 8
⊢ (𝑓 ∈ (Fil‘𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑋 → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)))) |
| 31 | 10, 19, 27, 30 | syl3c 66 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑥 ∈ 𝑋) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
| 32 | 31 | reximdva 3017 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
| 33 | 9, 32 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) ∧ 𝑟 ∈ ℝ+) →
(∀𝑠 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
| 34 | 33 | ralrimdva 2969 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (Fil‘𝑋)) → (∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓 → ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓)) |
| 35 | 34 | imdistanda 729 |
. . 3
⊢ (𝜑 → ((𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓) → (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
| 36 | | metxmet 22139 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 37 | | iscfil3 23071 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓))) |
| 38 | 14, 36, 37 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐷) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑠) ∈ 𝑓))) |
| 39 | | iscfil3 23071 |
. . . 4
⊢ (𝐶 ∈ (∞Met‘𝑋) → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
| 40 | 13, 21, 39 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐶) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐶)𝑟) ∈ 𝑓))) |
| 41 | 35, 38, 40 | 3imtr4d 283 |
. 2
⊢ (𝜑 → (𝑓 ∈ (CauFil‘𝐷) → 𝑓 ∈ (CauFil‘𝐶))) |
| 42 | 41 | ssrdv 3609 |
1
⊢ (𝜑 → (CauFil‘𝐷) ⊆ (CauFil‘𝐶)) |