Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   GIF version

Theorem etransclem12 40463
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem12.2 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Distinct variable groups:   𝑀,𝑐,𝑛   𝑁,𝑐,𝑛   𝑗,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑗,𝑐)   𝐶(𝑗,𝑛,𝑐)   𝑀(𝑗)   𝑁(𝑗)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
21a1i 11 . 2 (𝜑𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}))
3 oveq2 6658 . . . . 5 (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁))
43oveq1d 6665 . . . 4 (𝑛 = 𝑁 → ((0...𝑛) ↑𝑚 (0...𝑀)) = ((0...𝑁) ↑𝑚 (0...𝑀)))
5 eqeq2 2633 . . . 4 (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
64, 5rabeqbidv 3195 . . 3 (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
76adantl 482 . 2 ((𝜑𝑛 = 𝑁) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
8 etransclem12.2 . 2 (𝜑𝑁 ∈ ℕ0)
9 ovex 6678 . . . 4 ((0...𝑁) ↑𝑚 (0...𝑀)) ∈ V
109rabex 4813 . . 3 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V
1110a1i 11 . 2 (𝜑 → {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ∈ V)
122, 7, 8, 11fvmptd 6288 1 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  0cn0 11292  ...cfz 12326  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  etransclem16  40467  etransclem24  40475  etransclem26  40477  etransclem28  40479  etransclem31  40482  etransclem32  40483  etransclem34  40485  etransclem35  40486  etransclem37  40488  etransclem38  40489
  Copyright terms: Public domain W3C validator