![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem12 | Structured version Visualization version GIF version |
Description: 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem12.1 | ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
etransclem12.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
etransclem12 | ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem12.1 | . . 3 ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛})) |
3 | oveq2 6658 | . . . . 5 ⊢ (𝑛 = 𝑁 → (0...𝑛) = (0...𝑁)) | |
4 | 3 | oveq1d 6665 | . . . 4 ⊢ (𝑛 = 𝑁 → ((0...𝑛) ↑𝑚 (0...𝑀)) = ((0...𝑁) ↑𝑚 (0...𝑀))) |
5 | eqeq2 2633 | . . . 4 ⊢ (𝑛 = 𝑁 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛 ↔ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁)) | |
6 | 4, 5 | rabeqbidv 3195 | . . 3 ⊢ (𝑛 = 𝑁 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
7 | 6 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑁) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
8 | etransclem12.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | ovex 6678 | . . . 4 ⊢ ((0...𝑁) ↑𝑚 (0...𝑀)) ∈ V | |
10 | 9 | rabex 4813 | . . 3 ⊢ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁} ∈ V) |
12 | 2, 7, 8, 11 | fvmptd 6288 | 1 ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 0cc0 9936 ℕ0cn0 11292 ...cfz 12326 Σcsu 14416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 |
This theorem is referenced by: etransclem16 40467 etransclem24 40475 etransclem26 40477 etransclem28 40479 etransclem31 40482 etransclem32 40483 etransclem34 40485 etransclem35 40486 etransclem37 40488 etransclem38 40489 |
Copyright terms: Public domain | W3C validator |