Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem38 Structured version   Visualization version   GIF version

Theorem etransclem38 40489
Description: 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem38.p (𝜑𝑃 ∈ ℕ)
etransclem38.m (𝜑𝑀 ∈ ℕ0)
etransclem38.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem38.i (𝜑𝐼 ∈ ℕ0)
etransclem38.j (𝜑𝐽 ∈ (0...𝑀))
etransclem38.ij (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
etransclem38.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
Assertion
Ref Expression
etransclem38 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑛,𝑥   𝐼,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑛,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑗,𝑛,𝑐)

Proof of Theorem etransclem38
Dummy variables 𝑘 𝑑 𝑒 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem38.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem38.i . . . 4 (𝜑𝐼 ∈ ℕ0)
31, 2etransclem16 40467 . . 3 (𝜑 → (𝐶𝐼) ∈ Fin)
4 etransclem38.p . . . 4 (𝜑𝑃 ∈ ℕ)
54nnzd 11481 . . 3 (𝜑𝑃 ∈ ℤ)
64adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∈ ℕ)
7 etransclem38.m . . . . . 6 (𝜑𝑀 ∈ ℕ0)
87adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑀 ∈ ℕ0)
92adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐼 ∈ ℕ0)
10 etransclem11 40462 . . . . . 6 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚})
11 etransclem11 40462 . . . . . 6 (𝑚 ∈ ℕ0 ↦ {𝑒 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑒𝑘) = 𝑚}) = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
121, 10, 113eqtri 2648 . . . . 5 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑑𝑗) = 𝑛})
13 simpr 477 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ (𝐶𝐼))
14 etransclem38.j . . . . . 6 (𝜑𝐽 ∈ (0...𝑀))
1514adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ (0...𝑀))
16 eqid 2622 . . . . 5 (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))))
176, 8, 9, 12, 13, 15, 16etransclem28 40479 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
18 nnm1nn0 11334 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
194, 18syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
2019faccld 13071 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
2120nnzd 11481 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
2221adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℤ)
2320nnne0d 11065 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
2423adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ≠ 0)
2514elfzelzd 39530 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2625adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝐽 ∈ ℤ)
276, 8, 9, 26, 12, 13etransclem26 40477 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
28 dvdsval2 14986 . . . . 5 (((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0 ∧ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
2922, 24, 27, 28syl3anc 1326 . . . 4 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((!‘(𝑃 − 1)) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ↔ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ))
3017, 29mpbid 222 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
31 pm3.22 465 . . . . . . . 8 ((𝐽 = 0 ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3231adantll 750 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
33 etransclem38.ij . . . . . . . 8 (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3433ad3antrrr 766 . . . . . . 7 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 = (𝑃 − 1)) → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))
3532, 34pm2.65da 600 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → ¬ 𝐼 = (𝑃 − 1))
3635neqned 2801 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝐼 ≠ (𝑃 − 1))
374ad3antrrr 766 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∈ ℕ)
387ad3antrrr 766 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑀 ∈ ℕ0)
392ad3antrrr 766 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ∈ ℕ0)
40 simpr 477 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐼 ≠ (𝑃 − 1))
41 simplr 792 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝐽 = 0)
4213ad2antrr 762 . . . . . 6 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑐 ∈ (𝐶𝐼))
4337, 38, 39, 40, 41, 12, 42etransclem24 40475 . . . . 5 ((((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) ∧ 𝐼 ≠ (𝑃 − 1)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
4436, 43mpdan 702 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
454ad2antrr 762 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
467ad2antrr 762 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
472ad2antrr 762 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐼 ∈ ℕ0)
481, 2etransclem12 40463 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
4948adantr 481 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝐶𝐼) = {𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
5013, 49eleqtrd 2703 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼})
51 rabid 3116 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼} ↔ (𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5250, 51sylib 208 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝐼)) → (𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼))
5352simpld 475 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)))
54 elmapi 7879 . . . . . . . . 9 (𝑐 ∈ ((0...𝐼) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5553, 54syl 17 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑐:(0...𝑀)⟶(0...𝐼))
5655adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑐:(0...𝑀)⟶(0...𝐼))
5752simprd 479 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
5857adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝐼)
59 1zzd 11408 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
607nn0zd 11480 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
6160adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
6225adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
6359, 61, 623jca 1242 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ))
64 elfznn0 12433 . . . . . . . . . . . . . 14 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
6514, 64syl 17 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ℕ0)
66 neqne 2802 . . . . . . . . . . . . 13 𝐽 = 0 → 𝐽 ≠ 0)
6765, 66anim12i 590 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐽 = 0) → (𝐽 ∈ ℕ0𝐽 ≠ 0))
68 elnnne0 11306 . . . . . . . . . . . 12 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
6967, 68sylibr 224 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
7069nnge1d 11063 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
71 elfzle2 12345 . . . . . . . . . . . 12 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
7214, 71syl 17 . . . . . . . . . . 11 (𝜑𝐽𝑀)
7372adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
7463, 70, 73jca32 558 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
75 elfz2 12333 . . . . . . . . 9 (𝐽 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
7674, 75sylibr 224 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7776adantlr 751 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
7845, 46, 47, 56, 58, 16, 77etransclem25 40476 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
794nncnd 11036 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℂ)
80 1cnd 10056 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
8179, 80npcand 10396 . . . . . . . . . 10 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8281eqcomd 2628 . . . . . . . . 9 (𝜑𝑃 = ((𝑃 − 1) + 1))
8382fveq2d 6195 . . . . . . . 8 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
84 facp1 13065 . . . . . . . . 9 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8519, 84syl 17 . . . . . . . 8 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
8681oveq2d 6666 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
8720nncnd 11036 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
8887, 79mulcomd 10061 . . . . . . . . 9 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (𝑃 · (!‘(𝑃 − 1))))
8986, 88eqtrd 2656 . . . . . . . 8 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = (𝑃 · (!‘(𝑃 − 1))))
9083, 85, 893eqtrrd 2661 . . . . . . 7 (𝜑 → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
9190ad2antrr 762 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) = (!‘𝑃))
9227zcnd 11483 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℂ)
9387adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝐼)) → (!‘(𝑃 − 1)) ∈ ℂ)
9492, 93, 24divcan1d 10802 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝐼)) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9594adantr 481 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) = (((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
9678, 91, 953brtr4d 4685 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))))
975ad2antrr 762 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℤ)
9830adantr 481 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ)
9921ad2antrr 762 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
10023ad2antrr 762 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ≠ 0)
101 dvdsmulcr 15011 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) ∈ ℤ ∧ (!‘(𝑃 − 1)) ≠ 0)) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10297, 98, 99, 100, 101syl112anc 1330 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → ((𝑃 · (!‘(𝑃 − 1))) ∥ (((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) · (!‘(𝑃 − 1))) ↔ 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1)))))
10396, 102mpbid 222 . . . 4 (((𝜑𝑐 ∈ (𝐶𝐼)) ∧ ¬ 𝐽 = 0) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
10444, 103pm2.61dan 832 . . 3 ((𝜑𝑐 ∈ (𝐶𝐼)) → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1053, 5, 30, 104fsumdvds 15030 . 2 (𝜑𝑃 ∥ Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
106 reelprrecn 10028 . . . . . 6 ℝ ∈ {ℝ, ℂ}
107106a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
108 reopn 39501 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
109 eqid 2622 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
110109tgioo2 22606 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111108, 110eleqtri 2699 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
112111a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
113 etransclem38.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
114 etransclem5 40456 . . . . 5 (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
115 fzssre 39529 . . . . . 6 (0...𝑀) ⊆ ℝ
116115, 14sseldi 3601 . . . . 5 (𝜑𝐽 ∈ ℝ)
117107, 112, 4, 7, 113, 2, 114, 1, 116etransclem31 40482 . . . 4 (𝜑 → (((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) = Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
118117oveq1d 6665 . . 3 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
1193, 87, 92, 23fsumdivc 14518 . . 3 (𝜑 → (Σ𝑐 ∈ (𝐶𝐼)(((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
120118, 119eqtrd 2656 . 2 (𝜑 → ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))) = Σ𝑐 ∈ (𝐶𝐼)((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) / (!‘(𝑃 − 1))))
121105, 120breqtrrd 4681 1 (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  {crab 2916  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  (,)cioo 12175  ...cfz 12326  cexp 12860  !cfa 13060  Σcsu 14416  cprod 14635  cdvds 14983  t crest 16081  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem44  40495
  Copyright terms: Public domain W3C validator