| Step | Hyp | Ref
| Expression |
| 1 | | reelprrecn 10028 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 3 | | reopn 39501 |
. . . . 5
⊢ ℝ
∈ (topGen‘ran (,)) |
| 4 | | eqid 2622 |
. . . . . 6
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 5 | 4 | tgioo2 22606 |
. . . . 5
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 6 | 3, 5 | eleqtri 2699 |
. . . 4
⊢ ℝ
∈ ((TopOpen‘ℂfld) ↾t
ℝ) |
| 7 | 6 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
| 8 | | etransclem35.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 9 | | etransclem35.m |
. . 3
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 10 | | etransclem35.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
| 11 | | nnm1nn0 11334 |
. . . 4
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 12 | 8, 11 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 13 | | etransclem5 40456 |
. . 3
⊢ (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ ℝ ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ ℝ ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 14 | | etransclem35.c |
. . 3
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) |
| 15 | | 0red 10041 |
. . 3
⊢ (𝜑 → 0 ∈
ℝ) |
| 16 | 2, 7, 8, 9, 10, 12, 13, 14, 15 | etransclem31 40482 |
. 2
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) = Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) |
| 17 | | nfv 1843 |
. . 3
⊢
Ⅎ𝑐𝜑 |
| 18 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑐(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 19 | 14, 12 | etransclem16 40467 |
. . 3
⊢ (𝜑 → (𝐶‘(𝑃 − 1)) ∈ Fin) |
| 20 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (𝐶‘(𝑃 − 1))) |
| 21 | 14, 12 | etransclem12 40463 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)}) |
| 22 | 21 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝐶‘(𝑃 − 1)) = {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)}) |
| 23 | 20, 22 | eleqtrd 2703 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)}) |
| 24 | | rabid 3116 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)} ↔ (𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1))) |
| 25 | 23, 24 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1))) |
| 26 | 25 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)) |
| 27 | 26 | eqcomd 2628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑃 − 1) = Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) |
| 28 | 27 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (!‘(𝑃 − 1)) =
(!‘Σ𝑗 ∈
(0...𝑀)(𝑐‘𝑗))) |
| 29 | 28 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)))) |
| 30 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑗𝑐 |
| 31 | | fzfid 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (0...𝑀) ∈ Fin) |
| 32 | | nn0ex 11298 |
. . . . . . . . . 10
⊢
ℕ0 ∈ V |
| 33 | | fzssnn0 39533 |
. . . . . . . . . 10
⊢
(0...(𝑃 − 1))
⊆ ℕ0 |
| 34 | | mapss 7900 |
. . . . . . . . . 10
⊢
((ℕ0 ∈ V ∧ (0...(𝑃 − 1)) ⊆ ℕ0)
→ ((0...(𝑃 − 1))
↑𝑚 (0...𝑀)) ⊆ (ℕ0
↑𝑚 (0...𝑀))) |
| 35 | 32, 33, 34 | mp2an 708 |
. . . . . . . . 9
⊢
((0...(𝑃 − 1))
↑𝑚 (0...𝑀)) ⊆ (ℕ0
↑𝑚 (0...𝑀)) |
| 36 | 25 | simpld 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀))) |
| 37 | 35, 36 | sseldi 3601 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 ∈ (ℕ0
↑𝑚 (0...𝑀))) |
| 38 | 30, 31, 37 | mccl 39830 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℕ) |
| 39 | 29, 38 | eqeltrd 2701 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℕ) |
| 40 | 39 | nnzd 11481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℤ) |
| 41 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑃 ∈ ℕ) |
| 42 | 9 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑀 ∈
ℕ0) |
| 43 | | elmapi 7879 |
. . . . . . . 8
⊢ (𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 44 | 36, 43 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 45 | | 0zd 11389 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈
ℤ) |
| 46 | 41, 42, 44, 45 | etransclem10 40461 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ∈
ℤ) |
| 47 | | fzfid 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (1...𝑀) ∈ Fin) |
| 48 | 8 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ) |
| 49 | 44 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 50 | | fz1ssfz0 39524 |
. . . . . . . . . 10
⊢
(1...𝑀) ⊆
(0...𝑀) |
| 51 | 50 | sseli 3599 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀)) |
| 52 | 51 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 53 | | 0zd 11389 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → 0 ∈ ℤ) |
| 54 | 48, 49, 52, 53 | etransclem3 40454 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℤ) |
| 55 | 47, 54 | fprodzcl 14684 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℤ) |
| 56 | 46, 55 | zmulcld 11488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) ∈ ℤ) |
| 57 | 40, 56 | zmulcld 11488 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) ∈ ℤ) |
| 58 | 57 | zcnd 11483 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) ∈ ℂ) |
| 59 | | nn0uz 11722 |
. . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) |
| 60 | 12, 59 | syl6eleq 2711 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 − 1) ∈
(ℤ≥‘0)) |
| 61 | | eluzfz2 12349 |
. . . . . . . . . 10
⊢ ((𝑃 − 1) ∈
(ℤ≥‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1))) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 − 1) ∈ (0...(𝑃 − 1))) |
| 63 | | eluzfz1 12348 |
. . . . . . . . . 10
⊢ ((𝑃 − 1) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝑃 − 1))) |
| 64 | 60, 63 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ (0...(𝑃 − 1))) |
| 65 | 62, 64 | ifcld 4131 |
. . . . . . . 8
⊢ (𝜑 → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1))) |
| 66 | 65 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1))) |
| 67 | | etransclem35.d |
. . . . . . 7
⊢ 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0)) |
| 68 | 66, 67 | fmptd 6385 |
. . . . . 6
⊢ (𝜑 → 𝐷:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 69 | | ovex 6678 |
. . . . . . 7
⊢
(0...(𝑃 − 1))
∈ V |
| 70 | | ovex 6678 |
. . . . . . 7
⊢
(0...𝑀) ∈
V |
| 71 | 69, 70 | elmap 7886 |
. . . . . 6
⊢ (𝐷 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ↔ 𝐷:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 72 | 68, 71 | sylibr 224 |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀))) |
| 73 | 9, 59 | syl6eleq 2711 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
| 74 | | fzsscn 39526 |
. . . . . . . 8
⊢
(0...(𝑃 − 1))
⊆ ℂ |
| 75 | 68 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈ (0...(𝑃 − 1))) |
| 76 | 74, 75 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈ ℂ) |
| 77 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑗 = 0 → (𝐷‘𝑗) = (𝐷‘0)) |
| 78 | 73, 76, 77 | fsum1p 14482 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗))) |
| 79 | 67 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))) |
| 80 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 = 0) → 𝑗 = 0) |
| 81 | 80 | iftrued 4094 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = (𝑃 − 1)) |
| 82 | | eluzfz1 12348 |
. . . . . . . . 9
⊢ (𝑀 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑀)) |
| 83 | 73, 82 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
| 84 | 79, 81, 83, 12 | fvmptd 6288 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘0) = (𝑃 − 1)) |
| 85 | | 0p1e1 11132 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
| 86 | 85 | oveq1i 6660 |
. . . . . . . . . 10
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
| 87 | 86 | sumeq1i 14428 |
. . . . . . . . 9
⊢
Σ𝑗 ∈ ((0
+ 1)...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗) |
| 88 | 87 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗)) |
| 89 | 67 | fvmpt2 6291 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ (0...(𝑃 − 1))) → (𝐷‘𝑗) = if(𝑗 = 0, (𝑃 − 1), 0)) |
| 90 | 51, 65, 89 | syl2anr 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) = if(𝑗 = 0, (𝑃 − 1), 0)) |
| 91 | | 0red 10041 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 0 ∈ ℝ) |
| 92 | | 1red 10055 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 1 ∈ ℝ) |
| 93 | | elfzelz 12342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ) |
| 94 | 93 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℝ) |
| 95 | | 0lt1 10550 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
| 96 | 95 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 0 < 1) |
| 97 | | elfzle1 12344 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (1...𝑀) → 1 ≤ 𝑗) |
| 98 | 91, 92, 94, 96, 97 | ltletrd 10197 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (1...𝑀) → 0 < 𝑗) |
| 99 | 91, 98 | gtned 10172 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → 𝑗 ≠ 0) |
| 100 | 99 | neneqd 2799 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → ¬ 𝑗 = 0) |
| 101 | 100 | iffalsed 4097 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (1...𝑀) → if(𝑗 = 0, (𝑃 − 1), 0) = 0) |
| 102 | 101 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) = 0) |
| 103 | 90, 102 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) = 0) |
| 104 | 103 | sumeq2dv 14433 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)(𝐷‘𝑗) = Σ𝑗 ∈ (1...𝑀)0) |
| 105 | | fzfi 12771 |
. . . . . . . . . 10
⊢
(1...𝑀) ∈
Fin |
| 106 | 105 | olci 406 |
. . . . . . . . 9
⊢
((1...𝑀) ⊆
(ℤ≥‘𝐴) ∨ (1...𝑀) ∈ Fin) |
| 107 | | sumz 14453 |
. . . . . . . . 9
⊢
(((1...𝑀) ⊆
(ℤ≥‘𝐴) ∨ (1...𝑀) ∈ Fin) → Σ𝑗 ∈ (1...𝑀)0 = 0) |
| 108 | 106, 107 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑀)0 = 0) |
| 109 | 88, 104, 108 | 3eqtrd 2660 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗) = 0) |
| 110 | 84, 109 | oveq12d 6668 |
. . . . . 6
⊢ (𝜑 → ((𝐷‘0) + Σ𝑗 ∈ ((0 + 1)...𝑀)(𝐷‘𝑗)) = ((𝑃 − 1) + 0)) |
| 111 | 8 | nncnd 11036 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 112 | | 1cnd 10056 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
| 113 | 111, 112 | subcld 10392 |
. . . . . . 7
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
| 114 | 113 | addid1d 10236 |
. . . . . 6
⊢ (𝜑 → ((𝑃 − 1) + 0) = (𝑃 − 1)) |
| 115 | 78, 110, 114 | 3eqtrd 2660 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = (𝑃 − 1)) |
| 116 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑐 = 𝐷 → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 117 | 116 | sumeq2ad 14434 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗)) |
| 118 | 117 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1) ↔ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = (𝑃 − 1))) |
| 119 | 118 | elrab 3363 |
. . . . 5
⊢ (𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)} ↔ (𝐷 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷‘𝑗) = (𝑃 − 1))) |
| 120 | 72, 115, 119 | sylanbrc 698 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ {𝑐 ∈ ((0...(𝑃 − 1)) ↑𝑚
(0...𝑀)) ∣
Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)}) |
| 121 | 120, 21 | eleqtrrd 2704 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (𝐶‘(𝑃 − 1))) |
| 122 | 116 | fveq2d 6195 |
. . . . . 6
⊢ (𝑐 = 𝐷 → (!‘(𝑐‘𝑗)) = (!‘(𝐷‘𝑗))) |
| 123 | 122 | prodeq2ad 39824 |
. . . . 5
⊢ (𝑐 = 𝐷 → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) = ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) |
| 124 | 123 | oveq2d 6666 |
. . . 4
⊢ (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) = ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗)))) |
| 125 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → (𝑐‘0) = (𝐷‘0)) |
| 126 | 125 | breq2d 4665 |
. . . . . 6
⊢ (𝑐 = 𝐷 → ((𝑃 − 1) < (𝑐‘0) ↔ (𝑃 − 1) < (𝐷‘0))) |
| 127 | 125 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑐 = 𝐷 → ((𝑃 − 1) − (𝑐‘0)) = ((𝑃 − 1) − (𝐷‘0))) |
| 128 | 127 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑐 = 𝐷 → (!‘((𝑃 − 1) − (𝑐‘0))) = (!‘((𝑃 − 1) − (𝐷‘0)))) |
| 129 | 128 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) = ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0))))) |
| 130 | 127 | oveq2d 6666 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → (0↑((𝑃 − 1) − (𝑐‘0))) = (0↑((𝑃 − 1) − (𝐷‘0)))) |
| 131 | 129, 130 | oveq12d 6668 |
. . . . . 6
⊢ (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) ·
(0↑((𝑃 − 1)
− (𝐷‘0))))) |
| 132 | 126, 131 | ifbieq2d 4111 |
. . . . 5
⊢ (𝑐 = 𝐷 → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) = if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) ·
(0↑((𝑃 − 1)
− (𝐷‘0)))))) |
| 133 | 116 | breq2d 4665 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → (𝑃 < (𝑐‘𝑗) ↔ 𝑃 < (𝐷‘𝑗))) |
| 134 | 116 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐷 → (𝑃 − (𝑐‘𝑗)) = (𝑃 − (𝐷‘𝑗))) |
| 135 | 134 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑐 = 𝐷 → (!‘(𝑃 − (𝑐‘𝑗))) = (!‘(𝑃 − (𝐷‘𝑗)))) |
| 136 | 135 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑐 = 𝐷 → ((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗))))) |
| 137 | 134 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑐 = 𝐷 → ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))) = ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))) |
| 138 | 136, 137 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑐 = 𝐷 → (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) |
| 139 | 133, 138 | ifbieq2d 4111 |
. . . . . 6
⊢ (𝑐 = 𝐷 → if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) = if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) |
| 140 | 139 | prodeq2ad 39824 |
. . . . 5
⊢ (𝑐 = 𝐷 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) |
| 141 | 132, 140 | oveq12d 6668 |
. . . 4
⊢ (𝑐 = 𝐷 → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) = (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) |
| 142 | 124, 141 | oveq12d 6668 |
. . 3
⊢ (𝑐 = 𝐷 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))))) |
| 143 | 17, 18, 19, 58, 121, 142 | fsumsplit1 39804 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ (𝐶‘(𝑃 − 1))(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))))) |
| 144 | 33, 75 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) ∈
ℕ0) |
| 145 | 144 | faccld 13071 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝐷‘𝑗)) ∈ ℕ) |
| 146 | 145 | nncnd 11036 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝐷‘𝑗)) ∈ ℂ) |
| 147 | 77 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑗 = 0 → (!‘(𝐷‘𝑗)) = (!‘(𝐷‘0))) |
| 148 | 73, 146, 147 | fprod1p 14698 |
. . . . . . . . 9
⊢ (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗)) = ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷‘𝑗)))) |
| 149 | 84 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝜑 → (!‘(𝐷‘0)) = (!‘(𝑃 − 1))) |
| 150 | 86 | prodeq1i 14648 |
. . . . . . . . . . . 12
⊢
∏𝑗 ∈ ((0
+ 1)...𝑀)(!‘(𝐷‘𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷‘𝑗)) |
| 151 | 150 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷‘𝑗)) = ∏𝑗 ∈ (1...𝑀)(!‘(𝐷‘𝑗))) |
| 152 | 103 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (!‘(𝐷‘𝑗)) = (!‘0)) |
| 153 | | fac0 13063 |
. . . . . . . . . . . . 13
⊢
(!‘0) = 1 |
| 154 | 152, 153 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (!‘(𝐷‘𝑗)) = 1) |
| 155 | 154 | prodeq2dv 14653 |
. . . . . . . . . . 11
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)(!‘(𝐷‘𝑗)) = ∏𝑗 ∈ (1...𝑀)1) |
| 156 | | prod1 14674 |
. . . . . . . . . . . 12
⊢
(((1...𝑀) ⊆
(ℤ≥‘𝐴) ∨ (1...𝑀) ∈ Fin) → ∏𝑗 ∈ (1...𝑀)1 = 1) |
| 157 | 106, 156 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)1 = 1) |
| 158 | 151, 155,
157 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ (𝜑 → ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷‘𝑗)) = 1) |
| 159 | 149, 158 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘(𝐷‘0)) · ∏𝑗 ∈ ((0 + 1)...𝑀)(!‘(𝐷‘𝑗))) = ((!‘(𝑃 − 1)) · 1)) |
| 160 | 12 | faccld 13071 |
. . . . . . . . . . 11
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℕ) |
| 161 | 160 | nncnd 11036 |
. . . . . . . . . 10
⊢ (𝜑 → (!‘(𝑃 − 1)) ∈
ℂ) |
| 162 | 161 | mulid1d 10057 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘(𝑃 − 1)) · 1) =
(!‘(𝑃 −
1))) |
| 163 | 148, 159,
162 | 3eqtrd 2660 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗)) = (!‘(𝑃 − 1))) |
| 164 | 163 | oveq2d 6666 |
. . . . . . 7
⊢ (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) = ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1)))) |
| 165 | 160 | nnne0d 11065 |
. . . . . . . 8
⊢ (𝜑 → (!‘(𝑃 − 1)) ≠
0) |
| 166 | 161, 165 | dividd 10799 |
. . . . . . 7
⊢ (𝜑 → ((!‘(𝑃 − 1)) / (!‘(𝑃 − 1))) =
1) |
| 167 | 164, 166 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) = 1) |
| 168 | 12 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
| 169 | 84, 168 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐷‘0) ∈ ℝ) |
| 170 | 169, 168 | lttri3d 10177 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐷‘0) = (𝑃 − 1) ↔ (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0)))) |
| 171 | 84, 170 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → (¬ (𝐷‘0) < (𝑃 − 1) ∧ ¬ (𝑃 − 1) < (𝐷‘0))) |
| 172 | 171 | simprd 479 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝑃 − 1) < (𝐷‘0)) |
| 173 | 172 | iffalsed 4097 |
. . . . . . . 8
⊢ (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) =
(((!‘(𝑃 − 1)) /
(!‘((𝑃 − 1)
− (𝐷‘0))))
· (0↑((𝑃
− 1) − (𝐷‘0))))) |
| 174 | 84 | eqcomd 2628 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 − 1) = (𝐷‘0)) |
| 175 | 113, 174 | subeq0bd 10456 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑃 − 1) − (𝐷‘0)) = 0) |
| 176 | 175 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) =
(!‘0)) |
| 177 | 176, 153 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (𝜑 → (!‘((𝑃 − 1) − (𝐷‘0))) =
1) |
| 178 | 177 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = ((!‘(𝑃 − 1)) /
1)) |
| 179 | 161 | div1d 10793 |
. . . . . . . . . 10
⊢ (𝜑 → ((!‘(𝑃 − 1)) / 1) =
(!‘(𝑃 −
1))) |
| 180 | 178, 179 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) = (!‘(𝑃 − 1))) |
| 181 | 175 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) =
(0↑0)) |
| 182 | | 0cnd 10033 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℂ) |
| 183 | 182 | exp0d 13002 |
. . . . . . . . . 10
⊢ (𝜑 → (0↑0) =
1) |
| 184 | 181, 183 | eqtrd 2656 |
. . . . . . . . 9
⊢ (𝜑 → (0↑((𝑃 − 1) − (𝐷‘0))) =
1) |
| 185 | 180, 184 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝜑 → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) ·
(0↑((𝑃 − 1)
− (𝐷‘0)))) =
((!‘(𝑃 − 1))
· 1)) |
| 186 | 173, 185,
162 | 3eqtrd 2660 |
. . . . . . 7
⊢ (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) = (!‘(𝑃 − 1))) |
| 187 | | fzssre 39529 |
. . . . . . . . . . . 12
⊢
(0...(𝑃 − 1))
⊆ ℝ |
| 188 | 68 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 189 | 51 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 190 | 188, 189 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) ∈ (0...(𝑃 − 1))) |
| 191 | 187, 190 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) ∈ ℝ) |
| 192 | 8 | nnred 11035 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 193 | 192 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℝ) |
| 194 | 8 | nngt0d 11064 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑃) |
| 195 | 15, 192, 194 | ltled 10185 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ 𝑃) |
| 196 | 195 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 0 ≤ 𝑃) |
| 197 | 103, 196 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝐷‘𝑗) ≤ 𝑃) |
| 198 | 191, 193,
197 | lensymd 10188 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ¬ 𝑃 < (𝐷‘𝑗)) |
| 199 | 198 | iffalsed 4097 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) |
| 200 | 103 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷‘𝑗)) = (𝑃 − 0)) |
| 201 | 111 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℂ) |
| 202 | 201 | subid1d 10381 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃 − 0) = 𝑃) |
| 203 | 200, 202 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (𝑃 − (𝐷‘𝑗)) = 𝑃) |
| 204 | 203 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (!‘(𝑃 − (𝐷‘𝑗))) = (!‘𝑃)) |
| 205 | 204 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) = ((!‘𝑃) / (!‘𝑃))) |
| 206 | 8 | nnnn0d 11351 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 207 | 206 | faccld 13071 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (!‘𝑃) ∈ ℕ) |
| 208 | 207 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (!‘𝑃) ∈ ℂ) |
| 209 | 207 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (!‘𝑃) ≠ 0) |
| 210 | 208, 209 | dividd 10799 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((!‘𝑃) / (!‘𝑃)) = 1) |
| 211 | 210 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘𝑃)) = 1) |
| 212 | 205, 211 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) = 1) |
| 213 | | df-neg 10269 |
. . . . . . . . . . . . 13
⊢ -𝑗 = (0 − 𝑗) |
| 214 | 213 | eqcomi 2631 |
. . . . . . . . . . . 12
⊢ (0
− 𝑗) = -𝑗 |
| 215 | 214 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (0 − 𝑗) = -𝑗) |
| 216 | 215, 203 | oveq12d 6668 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))) = (-𝑗↑𝑃)) |
| 217 | 212, 216 | oveq12d 6668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))) = (1 · (-𝑗↑𝑃))) |
| 218 | 93 | znegcld 11484 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℤ) |
| 219 | 218 | zcnd 11483 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝑀) → -𝑗 ∈ ℂ) |
| 220 | 219 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → -𝑗 ∈ ℂ) |
| 221 | 206 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈
ℕ0) |
| 222 | 220, 221 | expcld 13008 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (-𝑗↑𝑃) ∈ ℂ) |
| 223 | 222 | mulid2d 10058 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (1 · (-𝑗↑𝑃)) = (-𝑗↑𝑃)) |
| 224 | 199, 217,
223 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = (-𝑗↑𝑃)) |
| 225 | 224 | prodeq2dv 14653 |
. . . . . . 7
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))) = ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)) |
| 226 | 186, 225 | oveq12d 6668 |
. . . . . 6
⊢ (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗)))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃))) |
| 227 | 167, 226 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) = (1 · ((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)))) |
| 228 | | fzfid 12772 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 229 | | zexpcl 12875 |
. . . . . . . . . 10
⊢ ((-𝑗 ∈ ℤ ∧ 𝑃 ∈ ℕ0)
→ (-𝑗↑𝑃) ∈
ℤ) |
| 230 | 218, 206,
229 | syl2anr 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑀)) → (-𝑗↑𝑃) ∈ ℤ) |
| 231 | 228, 230 | fprodzcl 14684 |
. . . . . . . 8
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃) ∈ ℤ) |
| 232 | 231 | zcnd 11483 |
. . . . . . 7
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃) ∈ ℂ) |
| 233 | 161, 232 | mulcld 10060 |
. . . . . 6
⊢ (𝜑 → ((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)) ∈ ℂ) |
| 234 | 233 | mulid2d 10058 |
. . . . 5
⊢ (𝜑 → (1 ·
((!‘(𝑃 − 1))
· ∏𝑗 ∈
(1...𝑀)(-𝑗↑𝑃))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃))) |
| 235 | 227, 234 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃))) |
| 236 | | eldifi 3732 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐 ∈ (𝐶‘(𝑃 − 1))) |
| 237 | 83 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ∈ (0...𝑀)) |
| 238 | 44, 237 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → (𝑐‘0) ∈ (0...(𝑃 − 1))) |
| 239 | 236, 238 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ (0...(𝑃 − 1))) |
| 240 | 187, 239 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℝ) |
| 241 | 168 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℝ) |
| 242 | | elfzle2 12345 |
. . . . . . . . . . . . . 14
⊢ ((𝑐‘0) ∈ (0...(𝑃 − 1)) → (𝑐‘0) ≤ (𝑃 − 1)) |
| 243 | 239, 242 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ≤ (𝑃 − 1)) |
| 244 | 240, 241,
243 | lensymd 10188 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) < (𝑐‘0)) |
| 245 | 244 | iffalsed 4097 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) =
(((!‘(𝑃 − 1)) /
(!‘((𝑃 − 1)
− (𝑐‘0))))
· (0↑((𝑃
− 1) − (𝑐‘0))))) |
| 246 | 12 | nn0zd 11480 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
| 247 | 246 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ∈ ℤ) |
| 248 | 239 | elfzelzd 39530 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) ∈ ℤ) |
| 249 | 247, 248 | zsubcld 11487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℤ) |
| 250 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐:(0...𝑀)⟶(0...(𝑃 − 1)) → 𝑐 Fn (0...𝑀)) |
| 251 | 44, 250 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 𝑐 Fn (0...𝑀)) |
| 252 | 251 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 Fn (0...𝑀)) |
| 253 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐷:(0...𝑀)⟶(0...(𝑃 − 1)) → 𝐷 Fn (0...𝑀)) |
| 254 | 68, 253 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐷 Fn (0...𝑀)) |
| 255 | 254 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝐷 Fn (0...𝑀)) |
| 256 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = 0 → (𝑐‘𝑗) = (𝑐‘0)) |
| 257 | 256 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘𝑗) = (𝑐‘0)) |
| 258 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 − 1) = (𝑐‘0) → (𝑃 − 1) = (𝑐‘0)) |
| 259 | 258 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃 − 1) = (𝑐‘0) → (𝑐‘0) = (𝑃 − 1)) |
| 260 | 259 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘0) = (𝑃 − 1)) |
| 261 | 77 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝐷‘𝑗) = (𝐷‘0)) |
| 262 | 84 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝐷‘0) = (𝑃 − 1)) |
| 263 | 261, 262 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 = 0) → (𝑃 − 1) = (𝐷‘𝑗)) |
| 264 | 263 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑃 − 1) = (𝐷‘𝑗)) |
| 265 | 257, 260,
264 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 266 | 265 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 = 0) → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 267 | 266 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 = 0) → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 268 | 26 | ad4antr 768 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)) |
| 269 | 168 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑃 − 1) ∈ ℝ) |
| 270 | 168 | ad4antr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑃 − 1) ∈ ℝ) |
| 271 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...(𝑃 − 1))) |
| 272 | 50 | sseli 3599 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ (0...𝑀)) |
| 273 | 272 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → 𝑘 ∈ (0...𝑀)) |
| 274 | 271, 273 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐‘𝑘) ∈ (0...(𝑃 − 1))) |
| 275 | 33, 274 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐‘𝑘) ∈
ℕ0) |
| 276 | 47, 275 | fsumnn0cl 14467 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) ∈
ℕ0) |
| 277 | 276 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) ∈ ℝ) |
| 278 | 277 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) ∈ ℝ) |
| 279 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 0 ∈
ℝ) |
| 280 | 44 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ (0...(𝑃 − 1))) |
| 281 | 187, 280 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈ ℝ) |
| 282 | 281 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑐‘𝑗) ∈ ℝ) |
| 283 | | nfv 1843 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
Ⅎ𝑘((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) |
| 284 | | nfcv 2764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
Ⅎ𝑘(𝑐‘𝑗) |
| 285 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (1...𝑀) ∈ Fin) |
| 286 | | simp-4l 806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1)))) |
| 287 | 74, 274 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐‘𝑘) ∈ ℂ) |
| 288 | 286, 287 | sylancom 701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) ∧ 𝑘 ∈ (1...𝑀)) → (𝑐‘𝑘) ∈ ℂ) |
| 289 | | 1zzd 11408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ∈
ℤ) |
| 290 | | elfzel2 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
| 291 | 290 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑀 ∈ ℤ) |
| 292 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
| 293 | 292 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℤ) |
| 294 | 289, 291,
293 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈
ℤ)) |
| 295 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0) |
| 296 | 295 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ0) |
| 297 | | neqne 2802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (¬
𝑗 = 0 → 𝑗 ≠ 0) |
| 298 | 297 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ≠ 0) |
| 299 | | elnnne0 11306 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑗 ∈ ℕ ↔ (𝑗 ∈ ℕ0
∧ 𝑗 ≠
0)) |
| 300 | 296, 298,
299 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ ℕ) |
| 301 | 300 | nnge1d 11063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 1 ≤ 𝑗) |
| 302 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
| 303 | 302 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ≤ 𝑀) |
| 304 | 294, 301,
303 | jca32 558 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (1 ≤
𝑗 ∧ 𝑗 ≤ 𝑀))) |
| 305 | | elfz2 12333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (1 ≤
𝑗 ∧ 𝑗 ≤ 𝑀))) |
| 306 | 304, 305 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) → 𝑗 ∈ (1...𝑀)) |
| 307 | 306 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑗 ∈ (0...𝑀) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 𝑗 ∈ (1...𝑀)) |
| 308 | 307 | adantlll 754 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 𝑗 ∈ (1...𝑀)) |
| 309 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑘 = 𝑗 → (𝑐‘𝑘) = (𝑐‘𝑗)) |
| 310 | 283, 284,
285, 288, 308, 309 | fsumsplit1 39804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) = ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘))) |
| 311 | 310 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘)) = Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘)) |
| 312 | 311, 278 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘)) ∈ ℝ) |
| 313 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑐‘𝑗) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐‘𝑗)) |
| 314 | 280, 313 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ (𝑐‘𝑗)) |
| 315 | 314 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 0 ≤ (𝑐‘𝑗)) |
| 316 | | neqne 2802 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (¬
(𝑐‘𝑗) = 0 → (𝑐‘𝑗) ≠ 0) |
| 317 | 316 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑐‘𝑗) ≠ 0) |
| 318 | 279, 282,
315, 317 | leneltd 10191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 0 < (𝑐‘𝑗)) |
| 319 | | diffi 8192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢
((1...𝑀) ∈ Fin
→ ((1...𝑀) ∖
{𝑗}) ∈
Fin) |
| 320 | 105, 319 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → ((1...𝑀) ∖ {𝑗}) ∈ Fin) |
| 321 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑘 ∈ ((1...𝑀) ∖ {𝑗}) → 𝑘 ∈ (1...𝑀)) |
| 322 | 321 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (1...𝑀)) |
| 323 | 50, 322 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 𝑘 ∈ (0...𝑀)) |
| 324 | 44 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ (0...(𝑃 − 1))) |
| 325 | 187, 324 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℝ) |
| 326 | 323, 325 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → (𝑐‘𝑘) ∈ ℝ) |
| 327 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝑐‘𝑘) ∈ (0...(𝑃 − 1)) → 0 ≤ (𝑐‘𝑘)) |
| 328 | 324, 327 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → 0 ≤ (𝑐‘𝑘)) |
| 329 | 323, 328 | syldan 487 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ ((1...𝑀) ∖ {𝑗})) → 0 ≤ (𝑐‘𝑘)) |
| 330 | 320, 326,
329 | fsumge0 14527 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘)) |
| 331 | 330 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → 0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘)) |
| 332 | 320, 326 | fsumrecl 14465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘) ∈ ℝ) |
| 333 | 332 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘) ∈ ℝ) |
| 334 | 281, 333 | addge01d 10615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (0 ≤ Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘) ↔ (𝑐‘𝑗) ≤ ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘)))) |
| 335 | 331, 334 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ≤ ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘))) |
| 336 | 335 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑐‘𝑗) ≤ ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘))) |
| 337 | 279, 282,
312, 318, 336 | ltletrd 10197 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 0 < ((𝑐‘𝑗) + Σ𝑘 ∈ ((1...𝑀) ∖ {𝑗})(𝑐‘𝑘))) |
| 338 | 337, 311 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 0 < Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘)) |
| 339 | 278, 338 | elrpd 11869 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) ∈
ℝ+) |
| 340 | 270, 339 | ltaddrpd 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘))) |
| 341 | 340 | adantlllr 39199 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑃 − 1) < ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘))) |
| 342 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = 𝑘 → (𝑐‘𝑗) = (𝑐‘𝑘)) |
| 343 | 342 | cbvsumv 14426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
Σ𝑗 ∈
(0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) |
| 344 | 343 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘)) |
| 345 | 73 | ad5antr 770 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → 𝑀 ∈
(ℤ≥‘0)) |
| 346 | | simp-5l 808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1)))) |
| 347 | 74, 324 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℂ) |
| 348 | 346, 347 | sylancom 701 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐‘𝑘) ∈ ℂ) |
| 349 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 = 0 → (𝑐‘𝑘) = (𝑐‘0)) |
| 350 | 345, 348,
349 | fsum1p 14482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐‘𝑘))) |
| 351 | 259 | ad4antlr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑐‘0) = (𝑃 − 1)) |
| 352 | 86 | sumeq1i 14428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
Σ𝑘 ∈ ((0
+ 1)...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘) |
| 353 | 352 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐‘𝑘) = Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘)) |
| 354 | 351, 353 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → ((𝑐‘0) + Σ𝑘 ∈ ((0 + 1)...𝑀)(𝑐‘𝑘)) = ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘))) |
| 355 | 344, 350,
354 | 3eqtrrd 2661 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → ((𝑃 − 1) + Σ𝑘 ∈ (1...𝑀)(𝑐‘𝑘)) = Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) |
| 356 | 341, 355 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → (𝑃 − 1) < Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗)) |
| 357 | 269, 356 | gtned 10172 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) ≠ (𝑃 − 1)) |
| 358 | 357 | neneqd 2799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) ∧ ¬ (𝑐‘𝑗) = 0) → ¬ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = (𝑃 − 1)) |
| 359 | 268, 358 | condan 835 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐‘𝑗) = 0) |
| 360 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → 𝑗 ∈ (0...𝑀)) |
| 361 | 33, 66 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → if(𝑗 = 0, (𝑃 − 1), 0) ∈
ℕ0) |
| 362 | 67 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ (0...𝑀) ∧ if(𝑗 = 0, (𝑃 − 1), 0) ∈ ℕ0)
→ (𝐷‘𝑗) = if(𝑗 = 0, (𝑃 − 1), 0)) |
| 363 | 360, 361,
362 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝐷‘𝑗) = if(𝑗 = 0, (𝑃 − 1), 0)) |
| 364 | 363 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝐷‘𝑗) = if(𝑗 = 0, (𝑃 − 1), 0)) |
| 365 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → ¬ 𝑗 = 0) |
| 366 | 365 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → if(𝑗 = 0, (𝑃 − 1), 0) = 0) |
| 367 | 364, 366 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷‘𝑗)) |
| 368 | 367 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷‘𝑗)) |
| 369 | 368 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → 0 = (𝐷‘𝑗)) |
| 370 | 359, 369 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑗 = 0) → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 371 | 267, 370 | pm2.61dan 832 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) = (𝐷‘𝑗)) |
| 372 | 252, 255,
371 | eqfnfvd 6314 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷) |
| 373 | 236, 372 | sylanl2 683 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → 𝑐 = 𝐷) |
| 374 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → 𝑐 ≠ 𝐷) |
| 375 | 374 | neneqd 2799 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) → ¬ 𝑐 = 𝐷) |
| 376 | 375 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ (𝑃 − 1) = (𝑐‘0)) → ¬ 𝑐 = 𝐷) |
| 377 | 373, 376 | pm2.65da 600 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ¬ (𝑃 − 1) = (𝑐‘0)) |
| 378 | 377 | neqned 2801 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑃 − 1) ≠ (𝑐‘0)) |
| 379 | 240, 241,
243, 378 | leneltd 10191 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (𝑐‘0) < (𝑃 − 1)) |
| 380 | 240, 241 | posdifd 10614 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑐‘0) < (𝑃 − 1) ↔ 0 < ((𝑃 − 1) − (𝑐‘0)))) |
| 381 | 379, 380 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → 0 < ((𝑃 − 1) − (𝑐‘0))) |
| 382 | | elnnz 11387 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 − 1) − (𝑐‘0)) ∈ ℕ ↔
(((𝑃 − 1) −
(𝑐‘0)) ∈ ℤ
∧ 0 < ((𝑃 − 1)
− (𝑐‘0)))) |
| 383 | 249, 381,
382 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈ ℕ) |
| 384 | 383 | 0expd 13024 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0↑((𝑃 − 1) − (𝑐‘0))) = 0) |
| 385 | 384 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0)))) = (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) ·
0)) |
| 386 | 161 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘(𝑃 − 1)) ∈
ℂ) |
| 387 | 383 | nnnn0d 11351 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((𝑃 − 1) − (𝑐‘0)) ∈
ℕ0) |
| 388 | 387 | faccld 13071 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℕ) |
| 389 | 388 | nncnd 11036 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ∈ ℂ) |
| 390 | 388 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (!‘((𝑃 − 1) − (𝑐‘0))) ≠ 0) |
| 391 | 386, 389,
390 | divcld 10801 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) ∈ ℂ) |
| 392 | 391 | mul01d 10235 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · 0) =
0) |
| 393 | 245, 385,
392 | 3eqtrd 2660 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) =
0) |
| 394 | 393 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) = (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) |
| 395 | 236, 55 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℤ) |
| 396 | 395 | zcnd 11483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))) ∈ ℂ) |
| 397 | 396 | mul02d 10234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0 · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) = 0) |
| 398 | 394, 397 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))) = 0) |
| 399 | 398 | oveq2d 6666 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · 0)) |
| 400 | | fzfid 12772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (0...𝑀) ∈ Fin) |
| 401 | 33, 280 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ (𝐶‘(𝑃 − 1))) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈
ℕ0) |
| 402 | 236, 401 | sylanl2 683 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (𝑐‘𝑗) ∈
ℕ0) |
| 403 | 402 | faccld 13071 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) ∧ 𝑗 ∈ (0...𝑀)) → (!‘(𝑐‘𝑗)) ∈ ℕ) |
| 404 | 400, 403 | fprodnncl 14685 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ∈ ℕ) |
| 405 | 404 | nncnd 11036 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ∈ ℂ) |
| 406 | 404 | nnne0d 11065 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗)) ≠ 0) |
| 407 | 386, 405,
406 | divcld 10801 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → ((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) ∈ ℂ) |
| 408 | 407 | mul01d 10235 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · 0) = 0) |
| 409 | 399, 408 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})) → (((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = 0) |
| 410 | 409 | sumeq2dv 14433 |
. . . . 5
⊢ (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0) |
| 411 | | diffi 8192 |
. . . . . . . 8
⊢ ((𝐶‘(𝑃 − 1)) ∈ Fin → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin) |
| 412 | 19, 411 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin) |
| 413 | 412 | olcd 408 |
. . . . . 6
⊢ (𝜑 → (((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ≥‘0)
∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin)) |
| 414 | | sumz 14453 |
. . . . . 6
⊢ ((((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ⊆ (ℤ≥‘0)
∨ ((𝐶‘(𝑃 − 1)) ∖ {𝐷}) ∈ Fin) →
Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0) |
| 415 | 413, 414 | syl 17 |
. . . . 5
⊢ (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})0 = 0) |
| 416 | 410, 415 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗))))))) = 0) |
| 417 | 235, 416 | oveq12d 6668 |
. . 3
⊢ (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) = (((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)) + 0)) |
| 418 | 233 | addid1d 10236 |
. . 3
⊢ (𝜑 → (((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)) + 0) = ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃))) |
| 419 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 420 | 419, 206,
228, 220 | fprodexp 39826 |
. . . 4
⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃) = (∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃)) |
| 421 | 420 | oveq2d 6666 |
. . 3
⊢ (𝜑 → ((!‘(𝑃 − 1)) ·
∏𝑗 ∈ (1...𝑀)(-𝑗↑𝑃)) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃))) |
| 422 | 417, 418,
421 | 3eqtrd 2660 |
. 2
⊢ (𝜑 → ((((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (0↑((𝑃 − 1) − (𝐷‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) + Σ𝑐 ∈ ((𝐶‘(𝑃 − 1)) ∖ {𝐷})(((!‘(𝑃 − 1)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (0↑((𝑃 − 1) − (𝑐‘0))))) ·
∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((0 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃))) |
| 423 | 16, 143, 422 | 3eqtrd 2660 |
1
⊢ (𝜑 → (((ℝ
D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) ·
(∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃))) |