![]() |
Metamath
Proof Explorer Theorem List (p. 405 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | fourierdlem78 40401* | 𝐺 is continuous when restricted on an interval not containing 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝐵 ∈ (-π[,]π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴(,)𝐵)) & ⊢ (𝜑 → (𝐹 ↾ ((𝐴 + 𝑋)(,)(𝐵 + 𝑋))) ∈ (((𝐴 + 𝑋)(,)(𝐵 + 𝑋))–cn→ℂ)) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ⇒ ⊢ (𝜑 → (𝐺 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℝ)) | ||
Theorem | fourierdlem79 40402* | 𝐸 projects every interval of the partition induced by 𝑆 on 𝐻 into a corresponding interval of the partition induced by 𝑄 on [𝐴, 𝐵]. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < 𝐷) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) | ||
Theorem | fourierdlem80 40403* | The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) & ⊢ 𝐼 = ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) & ⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) & ⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) & ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):𝐼⟶ℝ) & ⊢ 𝑌 = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) ⇒ ⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) | ||
Theorem | fourierdlem81 40404* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by its period 𝑇. In this lemma, 𝑇 is assumed to be strictly positive. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝐺 = (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ if(𝑥 = (𝑄‘𝑖), 𝑅, if(𝑥 = (𝑄‘(𝑖 + 1)), 𝐿, (𝐹‘𝑥)))) & ⊢ 𝐻 = (𝑥 ∈ ((𝑆‘𝑖)[,](𝑆‘(𝑖 + 1))) ↦ (𝐺‘(𝑥 − 𝑇))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem82 40405* | Integral by substitution, adding a constant to the function's argument, for a function on an open interval with finite limits ad boundary points. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) & ⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) & ⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐹‘𝑡) d𝑡 = ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘(𝑋 + 𝑡)) d𝑡) | ||
Theorem | fourierdlem83 40406* | The fourier partial sum for 𝐹 rewritten as an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐶 = (-π(,)π) & ⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈ 𝐿1) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫𝐶((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝑆‘𝑁) = ∫𝐶((𝐹‘𝑥) · ((𝐷‘𝑁)‘(𝑥 − 𝑋))) d𝑥) | ||
Theorem | fourierdlem84 40407* | If 𝐹 is piecewise coninuous and 𝐷 is continuous, then 𝐺 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐷 ∈ (ℝ–cn→ℝ)) & ⊢ 𝐺 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((𝐹‘(𝑋 + 𝑠)) · (𝐷‘𝑠))) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
Theorem | fourierdlem85 40408* | Limit of the function 𝐺 at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) & ⊢ (𝜑 → 𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = ((if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) | ||
Theorem | fourierdlem86 40409* | Continuity of 𝑂 and its limits with respect to the 𝑆 partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) & ⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ ((((𝐹‘(𝑋 + 𝑠)) − 𝐶) / 𝑠) · (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑇 = ({𝐴, 𝐵} ∪ (ran 𝑄 ∩ (𝐴(,)𝐵))) & ⊢ 𝑁 = ((#‘𝑇) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝐷 = (((if((𝑆‘(𝑗 + 1)) = (𝑄‘(𝑈 + 1)), ⦋𝑈 / 𝑖⦌𝐿, (𝐹‘(𝑋 + (𝑆‘(𝑗 + 1))))) − 𝐶) / (𝑆‘(𝑗 + 1))) · ((𝑆‘(𝑗 + 1)) / (2 · (sin‘((𝑆‘(𝑗 + 1)) / 2))))) & ⊢ 𝐸 = (((if((𝑆‘𝑗) = (𝑄‘𝑈), ⦋𝑈 / 𝑖⦌𝑅, (𝐹‘(𝑋 + (𝑆‘𝑗)))) − 𝐶) / (𝑆‘𝑗)) · ((𝑆‘𝑗) / (2 · (sin‘((𝑆‘𝑗) / 2))))) & ⊢ 𝑈 = (℩𝑖 ∈ (0..^𝑀)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ⇒ ⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐷 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘(𝑗 + 1))) ∧ 𝐸 ∈ ((𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) limℂ (𝑆‘𝑗))) ∧ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ (((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))–cn→ℂ))) | ||
Theorem | fourierdlem87 40410* | The integral of 𝐺 goes uniformly ( with respect to 𝑛) to zero if the measure of the domain of integration goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 𝑊 ∈ ℝ) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ 𝐿1) & ⊢ 𝐷 = ((𝑒 / 3) / 𝑎) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑎 ∈ ℝ+ ∧ ∀𝑛 ∈ ℕ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐺‘𝑠)) ≤ 𝑎) ∧ 𝑢 ∈ dom vol) ∧ (𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝐷)) ∧ 𝑛 ∈ ℕ)) ⇒ ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((𝑢 ⊆ (-π[,]π) ∧ (vol‘𝑢) ≤ 𝑑) → ∀𝑘 ∈ ℕ (abs‘∫𝑢((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) | ||
Theorem | fourierdlem88 40411* | Given a piecewise continuous function 𝐹, a continuous function 𝐾 and a continuous function 𝑆, the function 𝐺 is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ (𝜑 → 𝑁 ∈ ℝ) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐷 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐿1) | ||
Theorem | fourierdlem89 40412* | Given a piecewise continuous function and changing the interval and the partition, the limit at the lower bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) & ⊢ 𝑉 = (𝑖 ∈ (0..^𝑀) ↦ 𝑅) ⇒ ⊢ (𝜑 → if((𝑍‘(𝐸‘(𝑆‘𝐽))) = (𝑄‘(𝐼‘(𝑆‘𝐽))), (𝑉‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝑍‘(𝐸‘(𝑆‘𝐽))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘𝐽))) | ||
Theorem | fourierdlem90 40413* | Given a piecewise continuous function, it is still continuous with respect to an open interval of the moved partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐺 = (𝐹 ↾ ((𝐿‘(𝐸‘(𝑆‘𝐽)))(,)(𝐸‘(𝑆‘(𝐽 + 1))))) & ⊢ 𝑅 = (𝑦 ∈ (((𝐿‘(𝐸‘(𝑆‘𝐽))) + 𝑈)(,)((𝐸‘(𝑆‘(𝐽 + 1))) + 𝑈)) ↦ (𝐺‘(𝑦 − 𝑈))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) ∈ (((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem91 40414* | Given a piecewise continuous function and changing the interval and the partition, the limit at the upper bound of each interval of the moved partition is still finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ (𝜑 → 𝐽 ∈ (0..^𝑁)) & ⊢ 𝑈 = ((𝑆‘(𝐽 + 1)) − (𝐸‘(𝑆‘(𝐽 + 1)))) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) & ⊢ 𝑊 = (𝑖 ∈ (0..^𝑀) ↦ 𝐿) ⇒ ⊢ (𝜑 → if((𝐸‘(𝑆‘(𝐽 + 1))) = (𝑄‘((𝐼‘(𝑆‘𝐽)) + 1)), (𝑊‘(𝐼‘(𝑆‘𝐽))), (𝐹‘(𝐸‘(𝑆‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑆‘𝐽)(,)(𝑆‘(𝐽 + 1)))) limℂ (𝑆‘(𝐽 + 1)))) | ||
Theorem | fourierdlem92 40415* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by its period 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ ℝ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝑆 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) + 𝑇)) & ⊢ 𝐻 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑇) ∧ (𝑝‘𝑚) = (𝐵 + 𝑇)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem93 40416* | Integral by substitution (the domain is shifted by 𝑋) for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫(-π[,]π)(𝐹‘𝑡) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))(𝐹‘(𝑋 + 𝑠)) d𝑠) | ||
Theorem | fourierdlem94 40417* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem95 40418* | Algebraic manipulation of integrals, used by other lemmas. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝐼 = (ℝ D 𝐹) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℝ) & ⊢ (𝜑 → 𝐵 ∈ ((𝐼 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐶 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ dom vol) & ⊢ (𝜑 → 𝐴 ⊆ ((-π[,]π) ∖ {0})) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫𝐴(𝐺‘𝑠) d𝑠 / π)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ (𝜑 → 𝑂 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑠 ∈ 𝐴) → if(0 < 𝑠, 𝑌, 𝑊) = 𝑂) & ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∫𝐴((𝐷‘𝑛)‘𝑠) d𝑠 = (1 / 2)) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐸‘𝑛) + (𝑂 / 2)) = ∫𝐴((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠) | ||
Theorem | fourierdlem96 40419* | limit for 𝐹 at the lower bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → if(((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘𝐽))) = (𝑄‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), ((𝑖 ∈ (0..^𝑀) ↦ 𝑅)‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), (𝐹‘((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘𝐽))))) ∈ ((𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) limℂ (𝑉‘𝐽))) | ||
Theorem | fourierdlem97 40420* | 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐺 = (ℝ D 𝐹) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) & ⊢ 𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺‘𝑠), 0)) ⇒ ⊢ (𝜑 → (𝐺 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem98 40421* | 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → (𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ)) | ||
Theorem | fourierdlem99 40422* | limit for 𝐹 at the upper bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ (𝜑 → 𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1))) & ⊢ 𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ℎ ∈ ℤ (𝑦 + (ℎ · 𝑇)) ∈ ran 𝑄}))) ⇒ ⊢ (𝜑 → if(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉‘𝐽))), (𝐹‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵 − 𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑉‘𝐽)(,)(𝑉‘(𝐽 + 1)))) limℂ (𝑉‘(𝐽 + 1)))) | ||
Theorem | fourierdlem100 40423* | A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈ 𝐿1) | ||
Theorem | fourierdlem101 40424* | Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋)))) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:(-π[,]π)⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫(-π[,]π)((𝐹‘𝑡) · ((𝐷‘𝑁)‘(𝑡 − 𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑁)‘𝑠)) d𝑠) | ||
Theorem | fourierdlem102 40425* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐻 = ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) & ⊢ 𝑀 = ((#‘𝐻) − 1) & ⊢ 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻)) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem103 40426* | The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑚)‘𝑠)) d𝑠) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺‘𝑠) d𝑠 / π)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑂 = (𝑈 ↾ (-π[,]𝑑)) & ⊢ 𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑))) & ⊢ 𝑁 = ((#‘𝑇) − 1) & ⊢ 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝐶 = (℩𝑙 ∈ (0..^𝑀)((𝐽‘𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘𝑙)(,)(𝑄‘(𝑙 + 1)))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) ⇒ ⊢ (𝜑 → 𝑍 ⇝ (𝑊 / 2)) | ||
Theorem | fourierdlem104 40427* | The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘(𝑖 + 1)))) & ⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) & ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) & ⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) & ⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠))) & ⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑚)‘𝑠)) d𝑠) & ⊢ 𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺‘𝑠) d𝑠 / π)) & ⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2))))))) & ⊢ 𝑂 = (𝑈 ↾ (𝑑[,]π)) & ⊢ 𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π))) & ⊢ 𝑁 = ((#‘𝑇) − 1) & ⊢ 𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇)) & ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) & ⊢ 𝐶 = (℩𝑙 ∈ (0..^𝑀)((𝐽‘𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄‘𝑙)(,)(𝑄‘(𝑙 + 1)))) & ⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈‘𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2))) ⇒ ⊢ (𝜑 → 𝑍 ⇝ (𝑌 / 2)) | ||
Theorem | fourierdlem105 40428* | A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ (𝐶(,)+∞)) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹‘𝑥)) ∈ 𝐿1) | ||
Theorem | fourierdlem106 40429* | For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) ≠ ∅)) | ||
Theorem | fourierdlem107 40430* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({(𝐴 − 𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴 − 𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝑍‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem108 40431* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem109 40432* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 − 𝑋) ∧ (𝑝‘𝑚) = (𝐵 − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐻 = ({(𝐴 − 𝑋), (𝐵 − 𝑋)} ∪ {𝑥 ∈ ((𝐴 − 𝑋)[,](𝐵 − 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) & ⊢ 𝑁 = ((#‘𝐻) − 1) & ⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) & ⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄‘𝑗) ≤ (𝐽‘(𝐸‘𝑥))}, ℝ, < )) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem110 40433* | The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 40415 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ 𝑇 = (𝐵 − 𝐴) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) ⇒ ⊢ (𝜑 → ∫((𝐴 − 𝑋)[,](𝐵 − 𝑋))(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) | ||
Theorem | fourierdlem111 40434* | The fourier partial sum for 𝐹 is the sum of two integrals, with the same integrand involving 𝐹 and the Dirichlet Kernel 𝐷, but on two opposite intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑡) · (cos‘(𝑛 · 𝑡))) d𝑡 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑡) · (sin‘(𝑛 · 𝑡))) d𝑡 / π)) & ⊢ 𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷‘𝑛)‘𝑥))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ 𝑇 = (2 · π) & ⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝‘𝑚) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄‘𝑖) − 𝑋)) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑆‘𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷‘𝑛)‘𝑠)) d𝑠)) | ||
Theorem | fourierdlem112 40435* | Here abbreviations (local definitions) are introduced to prove the fourier 40442 theorem. (𝑍‘𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2))))))) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ 𝑁 = ((#‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1) & ⊢ 𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄}))) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ran 𝑉) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ (𝜑 → 𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋)))))) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹‘𝑡)) ≤ 𝑤) & ⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧) & ⊢ (𝜑 → 𝑋 ∈ ℝ) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem113 40436* | Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) ≠ ∅) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ (𝜑 → (𝐸‘𝑋) ∈ ran 𝑄) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem114 40437* | Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) & ⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇))) & ⊢ 𝐻 = ({-π, π, (𝐸‘𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺)) & ⊢ 𝑀 = ((#‘𝐻) − 1) & ⊢ 𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻)) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierdlem115 40438* | Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴‘𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵‘𝑘) · (sin‘(𝑘 · 𝑋))))) ⇒ ⊢ (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))) | ||
Theorem | fourierd 40439* | Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 40443. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 40444 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 40449. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)) | ||
Theorem | fourierclimd 40440* | Fourier series convergence, for piecewise smooth functions. See fourierd 40439 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) ⇒ ⊢ (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))) | ||
Theorem | fourierclim 40441* | Fourier series convergence, for piecewise smooth functions. See fourier 40442 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹:ℝ⟶ℝ & ⊢ 𝑇 = (2 · π) & ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin & ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) & ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) & ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) ⇒ ⊢ seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) | ||
Theorem | fourier 40442* | Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 40443. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 40444 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 40449. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐹:ℝ⟶ℝ & ⊢ 𝑇 = (2 · π) & ⊢ (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ ((-π(,)π) ∖ dom 𝐺) ∈ Fin & ⊢ 𝐺 ∈ (dom 𝐺–cn→ℂ) & ⊢ (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋) & ⊢ 𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2) | ||
Theorem | fouriercnp 40443* | If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹‘𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋)) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | ||
Theorem | fourier2 40444* | Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of 𝐹 at any given point 𝑋. See fourierd 40439 for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin) & ⊢ (𝜑 → 𝐺 ∈ (dom 𝐺–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) limℂ 𝑥) ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) limℂ 𝑥) ≠ ∅) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) limℂ 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2)) | ||
Theorem | sqwvfoura 40445* | Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0) | ||
Theorem | sqwvfourb 40446* | Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π)))) | ||
Theorem | fourierswlem 40447* | The Fourier series for the square wave 𝐹 converges to 𝑌, a simpler expression for this special case. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) ⇒ ⊢ 𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹‘𝑋)) / 2) | ||
Theorem | fouriersw 40448* | Fourier series convergence, for the square wave function. Where 𝐹 is discontinuous, the series converges to 0, the average value of the left and the right limits. Notice that 𝐹 is an odd function and its Fourier expansion has only sine terms (coefficients for cosine terms are zero). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝑇 = (2 · π) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1)) & ⊢ 𝑋 ∈ ℝ & ⊢ 𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1))) & ⊢ 𝑌 = if((𝑋 mod π) = 0, 0, (𝐹‘𝑋)) ⇒ ⊢ (((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌 ∧ seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌)) | ||
Theorem | fouriercn 40449* | If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function ( see fourierd 40439 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) & ⊢ 𝑇 = (2 · π) & ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ)) & ⊢ 𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π)) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) & ⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹‘𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π)) ⇒ ⊢ (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴‘𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵‘𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹‘𝑋)) | ||
Theorem | elaa2lem 40450* | Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 40451. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝔸) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐺 ∈ (Poly‘ℤ)) & ⊢ (𝜑 → 𝐺 ≠ 0𝑝) & ⊢ (𝜑 → (𝐺‘𝐴) = 0) & ⊢ 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) & ⊢ 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))) & ⊢ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) ⇒ ⊢ (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0)) | ||
Theorem | elaa2 40451* | Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.) |
⊢ (𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0))) | ||
Theorem | etransclem1 40452* | 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → (𝐻‘𝐽):𝑋⟶ℂ) | ||
Theorem | etransclem2 40453* | Derivative of 𝐺. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:ℝ⟶ℂ) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥))) | ||
Theorem | etransclem3 40454 | The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝐾 ∈ ℤ) ⇒ ⊢ (𝜑 → if(𝑃 < (𝐶‘𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝐽)))) · ((𝐾 − 𝐽)↑(𝑃 − (𝐶‘𝐽))))) ∈ ℤ) | ||
Theorem | etransclem4 40455* | 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝐴 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐸 = (𝑥 ∈ 𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐸) | ||
Theorem | etransclem5 40456* | A change of bound variable, often used in proofs for etransc 40500. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) | ||
Theorem | etransclem6 40457* | A change of bound variable, often used in proofs for etransc 40500. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦 − 𝑘)↑𝑃))) | ||
Theorem | etransclem7 40458* | The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) ⇒ ⊢ (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))) ∈ ℤ) | ||
Theorem | etransclem8 40459* | 𝐹 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) ⇒ ⊢ (𝜑 → 𝐹:𝑋⟶ℂ) | ||
Theorem | etransclem9 40460 | If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) | ||
Theorem | etransclem10 40461 | The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ) | ||
Theorem | etransclem11 40462* | A change of bound variable, often used in proofs for etransc 40500. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑‘𝑘) = 𝑚}) | ||
Theorem | etransclem12 40463* | 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑁}) | ||
Theorem | etransclem13 40464* | 𝐹 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑋 ⊆ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) | ||
Theorem | etransclem14 40465* | Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ (𝜑 → (𝐶‘0) = (𝑃 − 1)) ⇒ ⊢ (𝜑 → 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · (-𝑗↑(𝑃 − (𝐶‘𝑗)))))))) | ||
Theorem | etransclem15 40466* | Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ (𝜑 → (𝐶‘0) ≠ (𝑃 − 1)) ⇒ ⊢ (𝜑 → 𝑇 = 0) | ||
Theorem | etransclem16 40467* | Every element in the range of 𝐶 is a finite set. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶‘𝑁) ∈ Fin) | ||
Theorem | etransclem17 40468* | The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) | ||
Theorem | etransclem18 40469* | The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) & ⊢ (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹‘𝑥))) ∈ 𝐿1) | ||
Theorem | etransclem19 40470* | The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
Theorem | etransclem20 40471* | 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁):𝑋⟶ℂ) | ||
Theorem | etransclem21 40472* | The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) | ||
Theorem | etransclem22 40473* | The 𝑁-th derivative of 𝐻 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem23 40474* | This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) ⇒ ⊢ (𝜑 → (abs‘𝐾) < 1) | ||
Theorem | etransclem24 40475* | 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. when 𝐽 = 0 and 𝐼 is not equal to 𝑃 − 1. This is the second part of case 2 proven in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐼 ≠ (𝑃 − 1)) & ⊢ (𝜑 → 𝐽 = 0) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝐼)) ⇒ ⊢ (𝜑 → 𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem25 40476* | 𝑃 factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐶:(0...𝑀)⟶(0...𝑁)) & ⊢ (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶‘𝑗) = 𝑁) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶‘𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐶‘𝑗))))))) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑀)) ⇒ ⊢ (𝜑 → (!‘𝑃) ∥ 𝑇) | ||
Theorem | etransclem26 40477* | Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝑁)) ⇒ ⊢ (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) ∈ ℤ) | ||
Theorem | etransclem27 40478* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐶 ∈ Fin) & ⊢ (𝜑 → 𝐶:dom 𝐶⟶(ℕ0 ↑𝑚 (0...𝑀))) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑙 ∈ dom 𝐶∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘((𝐶‘𝑙)‘𝑗))‘𝑥)) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐺‘𝐽) ∈ ℤ) | ||
Theorem | etransclem28 40479* | (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐷 ∈ (𝐶‘𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷‘𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷‘𝑗)))) · ((𝐽 − 𝑗)↑(𝑃 − (𝐷‘𝑗))))))) ⇒ ⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇) | ||
Theorem | etransclem29 40480* | The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ 𝐸 = (𝑥 ∈ 𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻‘𝑗)‘𝑥)) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) | ||
Theorem | etransclem30 40481* | The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻‘𝑗))‘(𝑐‘𝑗))‘𝑥)))) | ||
Theorem | etransclem31 40482* | The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶‘𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐‘𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐‘𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐‘𝑗)))) · ((𝑌 − 𝑗)↑(𝑃 − (𝑐‘𝑗)))))))) | ||
Theorem | etransclem32 40483* | This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) | ||
Theorem | etransclem33 40484* | 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ) | ||
Theorem | etransclem34 40485* | The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐‘𝑘) = 𝑛}) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem35 40486* | 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ 𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0)) ⇒ ⊢ (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗↑𝑃))) | ||
Theorem | etransclem36 40487* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) | ||
Theorem | etransclem37 40488* | (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽)) | ||
Theorem | etransclem38 40489* | 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐼 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) & ⊢ (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0)) & ⊢ 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐‘𝑗) = 𝑛}) ⇒ ⊢ (𝜑 → 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem39 40490* | 𝐺 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐺:ℝ⟶ℂ) | ||
Theorem | etransclem40 40491* | The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥 − 𝑘)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem41 40492* | 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) ⇒ ⊢ (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem42 40493* | The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ) | ||
Theorem | etransclem43 40494* | 𝐺 is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) | ||
Theorem | etransclem44 40495* | The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → 𝐾 ≠ 0) | ||
Theorem | etransclem45 40496* | 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℤ) & ⊢ 𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → 𝐾 ∈ ℤ) | ||
Theorem | etransclem46 40497* | This is the proof for equation *(7) in [Juillerat] p. 12. The proven equality will lead to a contradiction, because the left-hand side goes to 0 for large 𝑃, but the right-hand side is a nonzero integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ (𝜑 → ℝ ⊆ ℝ) & ⊢ (𝜑 → ℝ ∈ {ℝ, ℂ}) & ⊢ (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)) & ⊢ (𝜑 → 𝑃 ∈ ℕ) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝑅 = ((𝑀 · 𝑃) + (𝑃 − 1)) & ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) & ⊢ 𝑂 = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · (𝐺‘𝑥))) ⇒ ⊢ (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st ‘𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd ‘𝑘))‘(1st ‘𝑘))) / (!‘(𝑃 − 1)))) | ||
Theorem | etransclem47 40498* | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → (abs‘(𝐴‘0)) < 𝑃) & ⊢ (𝜑 → (!‘𝑀) < 𝑃) & ⊢ (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) & ⊢ 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴‘𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹‘𝑥)) d𝑥) & ⊢ 𝐾 = (𝐿 / (!‘(𝑃 − 1))) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) | ||
Theorem | etransclem48 40499* | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.) |
⊢ (𝜑 → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝})) & ⊢ (𝜑 → (𝑄‘e) = 0) & ⊢ 𝐴 = (coeff‘𝑄) & ⊢ (𝜑 → (𝐴‘0) ≠ 0) & ⊢ 𝑀 = (deg‘𝑄) & ⊢ 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴‘𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) & ⊢ 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ≥‘𝑖)(abs‘(𝑆‘𝑛)) < 1}, ℝ, < ) & ⊢ 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)) | ||
Theorem | etransc 40500 | e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 28-Sep-2020.) |
⊢ e ∈ (ℂ ∖ 𝔸) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |