Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem11 Structured version   Visualization version   GIF version

Theorem etransclem11 40462
Description: A change of bound variable, often used in proofs for etransc 40500. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem11 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Distinct variable groups:   𝑀,𝑐,𝑑,𝑗,𝑘   𝑚,𝑀,𝑐,𝑑,𝑗   𝑛,𝑀,𝑐,𝑑,𝑘   𝑚,𝑛

Proof of Theorem etransclem11
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑛 = 𝑚 → (0...𝑛) = (0...𝑚))
21oveq1d 6665 . . . 4 (𝑛 = 𝑚 → ((0...𝑛) ↑𝑚 (0...𝑀)) = ((0...𝑚) ↑𝑚 (0...𝑀)))
32rabeqdv 3194 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑐 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
4 fveq2 6191 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
54cbvsumv 14426 . . . . . . 7 Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑐𝑘)
6 fveq1 6190 . . . . . . . 8 (𝑐 = 𝑑 → (𝑐𝑘) = (𝑑𝑘))
76sumeq2ad 14434 . . . . . . 7 (𝑐 = 𝑑 → Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
85, 7syl5eq 2668 . . . . . 6 (𝑐 = 𝑑 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑘 ∈ (0...𝑀)(𝑑𝑘))
98eqeq1d 2624 . . . . 5 (𝑐 = 𝑑 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛))
109cbvrabv 3199 . . . 4 {𝑐 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛}
11 eqeq2 2633 . . . . 5 (𝑛 = 𝑚 → (Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛 ↔ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚))
1211rabbidv 3189 . . . 4 (𝑛 = 𝑚 → {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1310, 12syl5eq 2668 . . 3 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
143, 13eqtrd 2656 . 2 (𝑛 = 𝑚 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛} = {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
1514cbvmptv 4750 1 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  {crab 2916  cmpt 4729  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  0cn0 11292  ...cfz 12326  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417
This theorem is referenced by:  etransclem32  40483  etransclem33  40484  etransclem36  40487  etransclem37  40488  etransclem38  40489  etransclem40  40491  etransclem41  40492  etransclem42  40493  etransclem44  40495  etransclem45  40496
  Copyright terms: Public domain W3C validator