Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem34 Structured version   Visualization version   GIF version

Theorem etransclem34 40485
Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem34.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem34.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem34.p (𝜑𝑃 ∈ ℕ)
etransclem34.m (𝜑𝑀 ∈ ℕ0)
etransclem34.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
etransclem34.n (𝜑𝑁 ∈ ℕ0)
etransclem34.h 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
etransclem34.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
Assertion
Ref Expression
etransclem34 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑥,𝑘   𝐶,𝑐,𝑘,𝑥   𝐹,𝑐   𝐻,𝑐,𝑘,𝑛,𝑥   𝑀,𝑐,𝑘,𝑥,𝑛   𝑁,𝑐,𝑘,𝑥,𝑛   𝑃,𝑘,𝑥   𝑆,𝑐,𝑘,𝑛,𝑥   𝑋,𝑐,𝑘,𝑥,𝑛   𝜑,𝑐,𝑘,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑘,𝑛)

Proof of Theorem etransclem34
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem34.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem34.a . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem34.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem34.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem34.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
6 etransclem34.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem34.h . . 3 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
8 etransclem34.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 40481 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))))
101, 2dvdmsscn 40151 . . 3 (𝜑𝑋 ⊆ ℂ)
118, 6etransclem16 40467 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
1210adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑋 ⊆ ℂ)
136faccld 13071 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1413nncnd 11036 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1514adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
16 fzfid 12772 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
17 fzssnn0 39533 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
18 ssrab2 3687 . . . . . . . . . . . . 13 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁} ⊆ ((0...𝑁) ↑𝑚 (0...𝑀))
19 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
208, 6etransclem12 40463 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2120adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2219, 21eleqtrd 2703 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2318, 22sseldi 3601 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
24 elmapi 7879 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2625ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2717, 26sseldi 3601 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℕ0)
2827faccld 13071 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℕ)
2928nncnd 11036 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℂ)
3016, 29fprodcl 14682 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ∈ ℂ)
3128nnne0d 11065 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ≠ 0)
3216, 29, 31fprodn0 14709 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ≠ 0)
3315, 30, 32divcld 10801 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) ∈ ℂ)
34 ssid 3624 . . . . . 6 ℂ ⊆ ℂ
3534a1i 11 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ℂ ⊆ ℂ)
3612, 33, 35constcncfg 40084 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))) ∈ (𝑋cn→ℂ))
371ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
382ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
393ad2antrr 762 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
40 etransclem5 40456 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
417, 40eqtri 2644 . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
42 simpr 477 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀))
4337, 38, 39, 41, 42, 27etransclem20 40471 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
44433adant2 1080 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
45 simp2 1062 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → 𝑥𝑋)
4644, 45ffvelrnd 6360 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) ∈ ℂ)
4743feqmptd 6249 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)))
4837, 38, 39, 41, 42, 27etransclem22 40473 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) ∈ (𝑋cn→ℂ))
4947, 48eqeltrrd 2702 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5012, 16, 46, 49fprodcncf 40114 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5136, 50mulcncf 23215 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
5210, 11, 51fsumcncf 40091 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
539, 52eqeltrd 2701 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574  ifcif 4086  {cpr 4179  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  ...cfz 12326  cexp 12860  !cfa 13060  Σcsu 14416  cprod 14635  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  cnccncf 22679   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem40  40491
  Copyright terms: Public domain W3C validator