Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem12 Structured version   Visualization version   Unicode version

Theorem etransclem12 40463
Description:  C applied to  N. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem12.1  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
etransclem12.2  |-  ( ph  ->  N  e.  NN0 )
Assertion
Ref Expression
etransclem12  |-  ( ph  ->  ( C `  N
)  =  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } )
Distinct variable groups:    M, c, n    N, c, n    j, n    ph, n
Allowed substitution hints:    ph( j, c)    C( j, n, c)    M( j)    N( j)

Proof of Theorem etransclem12
StepHypRef Expression
1 etransclem12.1 . . 3  |-  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  n }
)
21a1i 11 . 2  |-  ( ph  ->  C  =  ( n  e.  NN0  |->  { c  e.  ( ( 0 ... n )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  n } ) )
3 oveq2 6658 . . . . 5  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
43oveq1d 6665 . . . 4  |-  ( n  =  N  ->  (
( 0 ... n
)  ^m  ( 0 ... M ) )  =  ( ( 0 ... N )  ^m  ( 0 ... M
) ) )
5 eqeq2 2633 . . . 4  |-  ( n  =  N  ->  ( sum_ j  e.  ( 0 ... M ) ( c `  j )  =  n  <->  sum_ j  e.  ( 0 ... M
) ( c `  j )  =  N ) )
64, 5rabeqbidv 3195 . . 3  |-  ( n  =  N  ->  { c  e.  ( ( 0 ... n )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  n }  =  { c  e.  ( ( 0 ... N
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }
)
76adantl 482 . 2  |-  ( (
ph  /\  n  =  N )  ->  { c  e.  ( ( 0 ... n )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  n }  =  { c  e.  ( ( 0 ... N
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }
)
8 etransclem12.2 . 2  |-  ( ph  ->  N  e.  NN0 )
9 ovex 6678 . . . 4  |-  ( ( 0 ... N )  ^m  ( 0 ... M ) )  e. 
_V
109rabex 4813 . . 3  |-  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N }  e.  _V
1110a1i 11 . 2  |-  ( ph  ->  { c  e.  ( ( 0 ... N
)  ^m  ( 0 ... M ) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j
)  =  N }  e.  _V )
122, 7, 8, 11fvmptd 6288 1  |-  ( ph  ->  ( C `  N
)  =  { c  e.  ( ( 0 ... N )  ^m  ( 0 ... M
) )  |  sum_ j  e.  ( 0 ... M ) ( c `  j )  =  N } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   NN0cn0 11292   ...cfz 12326   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653
This theorem is referenced by:  etransclem16  40467  etransclem24  40475  etransclem26  40477  etransclem28  40479  etransclem31  40482  etransclem32  40483  etransclem34  40485  etransclem35  40486  etransclem37  40488  etransclem38  40489
  Copyright terms: Public domain W3C validator