Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   GIF version

Theorem etransclem37 40488
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem37.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem37.p (𝜑𝑃 ∈ ℕ)
etransclem37.m (𝜑𝑀 ∈ ℕ0)
etransclem37.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem37.n (𝜑𝑁 ∈ ℕ0)
etransclem37.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem37.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem37.9 (𝜑𝐽 ∈ (0...𝑀))
etransclem37.j (𝜑𝐽𝑋)
Assertion
Ref Expression
etransclem37 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝐽(𝑛)   𝑋(𝑐)

Proof of Theorem etransclem37
Dummy variables 𝑘 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem37.n . . . 4 (𝜑𝑁 ∈ ℕ0)
31, 2etransclem16 40467 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
4 etransclem37.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
5 nnm1nn0 11334 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
76faccld 13071 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
87nnzd 11481 . . 3 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
91, 2etransclem12 40463 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
109eleq2d 2687 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (𝐶𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}))
1110biimpa 501 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 rabid 3116 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1312biimpi 206 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1413simprd 479 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1511, 14syl 17 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1615eqcomd 2628 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
1716fveq2d 6195 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
1817oveq1d 6665 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
19 nfcv 2764 . . . . . . 7 𝑗𝑐
20 fzfid 12772 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 nn0ex 11298 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ℕ0 ∈ V)
23 fzssnn0 39533 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
24 mapss 7900 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2522, 23, 24sylancl 694 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2613simpld 475 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2725, 26sseldd 3604 . . . . . . . 8 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2811, 27syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2919, 20, 28mccl 39830 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3018, 29eqeltrd 2701 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3130nnzd 11481 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
324adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑃 ∈ ℕ)
33 etransclem37.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3433adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ ℕ0)
35 elmapi 7879 . . . . . . 7 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3611, 26, 353syl 18 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
37 etransclem37.9 . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
3837elfzelzd 39530 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
3938adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ ℤ)
4032, 34, 36, 39etransclem10 40461 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
41 fzfid 12772 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (1...𝑀) ∈ Fin)
4232adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4336adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
44 0z 11388 . . . . . . . . . . 11 0 ∈ ℤ
45 fzp1ss 12392 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
4644, 45ax-mp 5 . . . . . . . . . 10 ((0 + 1)...𝑀) ⊆ (0...𝑀)
4746sseli 3599 . . . . . . . . 9 (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀))
48 1e0p1 11552 . . . . . . . . . 10 1 = (0 + 1)
4948oveq1i 6660 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
5047, 49eleq2s 2719 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5150adantl 482 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
5239adantr 481 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
5342, 43, 51, 52etransclem3 40454 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5441, 53fprodzcl 14684 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5540, 54zmulcld 11488 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5631, 55zmulcld 11488 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
572adantr 481 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 ∈ ℕ0)
58 etransclem11 40462 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
591, 58eqtri 2644 . . . 4 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
60 simpr 477 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
6137adantr 481 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ (0...𝑀))
62 fveq2 6191 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
6362fveq2d 6195 . . . . . . 7 (𝑗 = 𝑘 → (!‘(𝑐𝑗)) = (!‘(𝑐𝑘)))
6463cbvprodv 14646 . . . . . 6 𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))
6564oveq2i 6661 . . . . 5 ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))
6662breq2d 4665 . . . . . . . 8 (𝑗 = 𝑘 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑘)))
6762oveq2d 6666 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝑐𝑘)))
6867fveq2d 6195 . . . . . . . . . 10 (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑘))))
6968oveq2d 6666 . . . . . . . . 9 (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))))
70 oveq2 6658 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
7170, 67oveq12d 6668 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))) = ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))
7269, 71oveq12d 6668 . . . . . . . 8 (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7366, 72ifbieq2d 4111 . . . . . . 7 (𝑗 = 𝑘 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7473cbvprodv 14646 . . . . . 6 𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7574oveq2i 6661 . . . . 5 (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7665, 75oveq12i 6662 . . . 4 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))))
7732, 34, 57, 59, 60, 61, 76etransclem28 40479 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
783, 8, 56, 77fsumdvds 15030 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
79 etransclem37.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
80 etransclem37.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
81 etransclem37.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
82 etransclem37.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
83 etransclem37.j . . 3 (𝜑𝐽𝑋)
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 40482 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
8578, 84breqtrrd 4681 1 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  ...cfz 12326  cexp 12860  !cfa 13060  Σcsu 14416  cprod 14635  cdvds 14983  t crest 16081  TopOpenctopn 16082  fldccnfld 19746   D𝑛 cdvn 23628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-prod 14636  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632
This theorem is referenced by:  etransclem44  40495  etransclem45  40496
  Copyright terms: Public domain W3C validator