![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uncdadom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
uncdadom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4790 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsneng 8045 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
3 | 1, 2 | mpan2 707 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ≈ 𝐴) |
4 | ensym 8005 | . . . 4 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → 𝐴 ≈ (𝐴 × {∅})) | |
5 | endom 7982 | . . . 4 ⊢ (𝐴 ≈ (𝐴 × {∅}) → 𝐴 ≼ (𝐴 × {∅})) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 × {∅})) |
7 | 1on 7567 | . . . . 5 ⊢ 1𝑜 ∈ On | |
8 | xpsneng 8045 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
9 | 7, 8 | mpan2 707 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵 × {1𝑜}) ≈ 𝐵) |
10 | ensym 8005 | . . . 4 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → 𝐵 ≈ (𝐵 × {1𝑜})) | |
11 | endom 7982 | . . . 4 ⊢ (𝐵 ≈ (𝐵 × {1𝑜}) → 𝐵 ≼ (𝐵 × {1𝑜})) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ (𝐵 × {1𝑜})) |
13 | xp01disj 7576 | . . . 4 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ | |
14 | undom 8048 | . . . 4 ⊢ (((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
15 | 13, 14 | mpan2 707 | . . 3 ⊢ ((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
16 | 6, 12, 15 | syl2an 494 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
17 | cdaval 8992 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
18 | 16, 17 | breqtrrd 4681 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ∩ cin 3573 ∅c0 3915 {csn 4177 class class class wbr 4653 × cxp 5112 Oncon0 5723 (class class class)co 6650 1𝑜c1o 7553 ≈ cen 7952 ≼ cdom 7953 +𝑐 ccda 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-cda 8990 |
This theorem is referenced by: cdadom3 9010 unnum 9022 ficardun2 9025 pwsdompw 9026 unctb 9027 infunabs 9029 infcda 9030 infdif 9031 |
Copyright terms: Public domain | W3C validator |