| Step | Hyp | Ref
| Expression |
| 1 | | fpwwe2lem9.m |
. . . 4
⊢ 𝑀 = OrdIso(𝑅, 𝑋) |
| 2 | 1 | oif 8435 |
. . 3
⊢ 𝑀:dom 𝑀⟶𝑋 |
| 3 | | ffn 6045 |
. . 3
⊢ (𝑀:dom 𝑀⟶𝑋 → 𝑀 Fn dom 𝑀) |
| 4 | 2, 3 | mp1i 13 |
. 2
⊢ (𝜑 → 𝑀 Fn dom 𝑀) |
| 5 | | fpwwe2lem9.n |
. . . . 5
⊢ 𝑁 = OrdIso(𝑆, 𝑌) |
| 6 | 5 | oif 8435 |
. . . 4
⊢ 𝑁:dom 𝑁⟶𝑌 |
| 7 | | ffn 6045 |
. . . 4
⊢ (𝑁:dom 𝑁⟶𝑌 → 𝑁 Fn dom 𝑁) |
| 8 | 6, 7 | mp1i 13 |
. . 3
⊢ (𝜑 → 𝑁 Fn dom 𝑁) |
| 9 | | fpwwe2lem9.s |
. . 3
⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) |
| 10 | | fnssres 6004 |
. . 3
⊢ ((𝑁 Fn dom 𝑁 ∧ dom 𝑀 ⊆ dom 𝑁) → (𝑁 ↾ dom 𝑀) Fn dom 𝑀) |
| 11 | 8, 9, 10 | syl2anc 693 |
. 2
⊢ (𝜑 → (𝑁 ↾ dom 𝑀) Fn dom 𝑀) |
| 12 | 1 | oicl 8434 |
. . . . . 6
⊢ Ord dom
𝑀 |
| 13 | | ordelon 5747 |
. . . . . 6
⊢ ((Ord dom
𝑀 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ∈ On) |
| 14 | 12, 13 | mpan 706 |
. . . . 5
⊢ (𝑤 ∈ dom 𝑀 → 𝑤 ∈ On) |
| 15 | | eleq1 2689 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑤 ∈ dom 𝑀 ↔ 𝑦 ∈ dom 𝑀)) |
| 16 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑀‘𝑤) = (𝑀‘𝑦)) |
| 17 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑁‘𝑤) = (𝑁‘𝑦)) |
| 18 | 16, 17 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑀‘𝑤) = (𝑁‘𝑤) ↔ (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 19 | 15, 18 | imbi12d 334 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → ((𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)) ↔ (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)))) |
| 20 | 19 | imbi2d 330 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))) ↔ (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))))) |
| 21 | | r19.21v 2960 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) ↔ (𝜑 → ∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)))) |
| 22 | 12 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ord dom 𝑀) |
| 23 | | ordelss 5739 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord dom
𝑀 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀) |
| 24 | 22, 23 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑀) |
| 25 | 24 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ 𝑦 ∈ 𝑤) → 𝑦 ∈ dom 𝑀) |
| 26 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ dom 𝑀 → ((𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ 𝑦 ∈ 𝑤) → ((𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 28 | 27 | ralimdva 2962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 29 | 4 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑀 Fn dom 𝑀) |
| 30 | | fnssres 6004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 Fn dom 𝑀 ∧ 𝑤 ⊆ dom 𝑀) → (𝑀 ↾ 𝑤) Fn 𝑤) |
| 31 | 29, 24, 30 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀 ↾ 𝑤) Fn 𝑤) |
| 32 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑁 Fn dom 𝑁) |
| 33 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → dom 𝑀 ⊆ dom 𝑁) |
| 34 | 24, 33 | sstrd 3613 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ⊆ dom 𝑁) |
| 35 | | fnssres 6004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 Fn dom 𝑁 ∧ 𝑤 ⊆ dom 𝑁) → (𝑁 ↾ 𝑤) Fn 𝑤) |
| 36 | 32, 34, 35 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑁 ↾ 𝑤) Fn 𝑤) |
| 37 | | eqfnfv 6311 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ↾ 𝑤) Fn 𝑤 ∧ (𝑁 ↾ 𝑤) Fn 𝑤) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦))) |
| 38 | 31, 36, 37 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦))) |
| 39 | | fvres 6207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑀 ↾ 𝑤)‘𝑦) = (𝑀‘𝑦)) |
| 40 | | fvres 6207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑤 → ((𝑁 ↾ 𝑤)‘𝑦) = (𝑁‘𝑦)) |
| 41 | 39, 40 | eqeq12d 2637 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑤 → (((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦) ↔ (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 42 | 41 | ralbiia 2979 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑤 ((𝑀 ↾ 𝑤)‘𝑦) = ((𝑁 ↾ 𝑤)‘𝑦) ↔ ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦)) |
| 43 | 38, 42 | syl6bb 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) ↔ ∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦))) |
| 44 | | fpwwe2.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} |
| 45 | | fpwwe2.2 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐴 ∈ V) |
| 46 | 45 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝐴 ∈ V) |
| 47 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝜑) |
| 48 | | fpwwe2.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 49 | 47, 48 | sylan 488 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) |
| 50 | | fpwwe2lem9.x |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑋𝑊𝑅) |
| 51 | 50 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑋𝑊𝑅) |
| 52 | | fpwwe2lem9.y |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑌𝑊𝑆) |
| 53 | 52 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑌𝑊𝑆) |
| 54 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑤 ∈ dom 𝑀) |
| 55 | 9 | sselda 3603 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → 𝑤 ∈ dom 𝑁) |
| 56 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → 𝑤 ∈ dom 𝑁) |
| 57 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) |
| 58 | 44, 46, 49, 51, 53, 1, 5, 54, 56, 57 | fpwwe2lem7 9458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → (𝑦𝑆(𝑁‘𝑤) ∧ (𝑧𝑅(𝑀‘𝑤) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)))) |
| 59 | 58 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → 𝑦𝑆(𝑁‘𝑤)) |
| 60 | 57 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑁 ↾ 𝑤) = (𝑀 ↾ 𝑤)) |
| 61 | 44, 46, 49, 53, 51, 5, 1, 56, 54, 60 | fpwwe2lem7 9458 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑆(𝑁‘𝑤)) → (𝑦𝑅(𝑀‘𝑤) ∧ (𝑧𝑆(𝑁‘𝑤) → (𝑦𝑆𝑧 ↔ 𝑦𝑅𝑧)))) |
| 62 | 61 | simpld 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑆(𝑁‘𝑤)) → 𝑦𝑅(𝑀‘𝑤)) |
| 63 | 59, 62 | impbida 877 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑦𝑅(𝑀‘𝑤) ↔ 𝑦𝑆(𝑁‘𝑤))) |
| 64 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀‘𝑤) ∈ V |
| 65 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
| 66 | 65 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀‘𝑤) ∈ V → (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦𝑅(𝑀‘𝑤))) |
| 67 | 64, 66 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦𝑅(𝑀‘𝑤)) |
| 68 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁‘𝑤) ∈ V |
| 69 | 65 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁‘𝑤) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}) ↔ 𝑦𝑆(𝑁‘𝑤))) |
| 70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}) ↔ 𝑦𝑆(𝑁‘𝑤)) |
| 71 | 63, 67, 70 | 3bitr4g 303 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑦 ∈ (◡𝑆 “ {(𝑁‘𝑤)}))) |
| 72 | 71 | eqrdv 2620 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (◡𝑅 “ {(𝑀‘𝑤)}) = (◡𝑆 “ {(𝑁‘𝑤)})) |
| 73 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ⊆ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) |
| 74 | | relxp 5227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Rel
((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) |
| 75 | | relss 5206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ⊆ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) → (Rel ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) → Rel (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))))) |
| 76 | 73, 74, 75 | mp2 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) |
| 77 | | inss2 3834 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ⊆ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) |
| 78 | | relss 5206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ⊆ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) → (Rel ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) → Rel (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))))) |
| 79 | 77, 74, 78 | mp2 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) |
| 80 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑧 ∈ V |
| 81 | 80 | eliniseg 5494 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑀‘𝑤) ∈ V → (𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ↔ 𝑧𝑅(𝑀‘𝑤))) |
| 82 | 66, 81 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀‘𝑤) ∈ V → ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ↔ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤)))) |
| 83 | 64, 82 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ↔ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤))) |
| 84 | 58 | simprd 479 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ 𝑦𝑅(𝑀‘𝑤)) → (𝑧𝑅(𝑀‘𝑤) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧))) |
| 85 | 84 | impr 649 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑦𝑅(𝑀‘𝑤) ∧ 𝑧𝑅(𝑀‘𝑤))) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) |
| 86 | 83, 85 | sylan2b 492 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) ∧ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}))) → (𝑦𝑅𝑧 ↔ 𝑦𝑆𝑧)) |
| 87 | 86 | pm5.32da 673 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧))) |
| 88 | | brinxp2 5180 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑦𝑅𝑧)) |
| 89 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ 〈𝑦, 𝑧〉 ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
| 90 | | df-3an 1039 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑦𝑅𝑧) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧)) |
| 91 | 88, 89, 90 | 3bitr3i 290 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑦, 𝑧〉 ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑅𝑧)) |
| 92 | | brinxp2 5180 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ (𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑦𝑆𝑧)) |
| 93 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦(𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))𝑧 ↔ 〈𝑦, 𝑧〉 ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
| 94 | | df-3an 1039 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑦𝑆𝑧) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧)) |
| 95 | 92, 93, 94 | 3bitr3i 290 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈𝑦, 𝑧〉 ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ ((𝑦 ∈ (◡𝑅 “ {(𝑀‘𝑤)}) ∧ 𝑧 ∈ (◡𝑅 “ {(𝑀‘𝑤)})) ∧ 𝑦𝑆𝑧)) |
| 96 | 87, 91, 95 | 3bitr4g 303 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (〈𝑦, 𝑧〉 ∈ (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) ↔ 〈𝑦, 𝑧〉 ∈ (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))))) |
| 97 | 76, 79, 96 | eqrelrdv 5216 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) |
| 98 | 72 | sqxpeqd 5141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})) = ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)}))) |
| 99 | 98 | ineq2d 3814 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑆 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) |
| 100 | 97, 99 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)}))) = (𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) |
| 101 | 72, 100 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)}))))) |
| 102 | 2 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) ∈ 𝑋) |
| 103 | 102 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) ∈ 𝑋) |
| 104 | 103 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀‘𝑤) ∈ 𝑋) |
| 105 | 44, 45, 50 | fpwwe2lem3 9455 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑀‘𝑤) ∈ 𝑋) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = (𝑀‘𝑤)) |
| 106 | 47, 104, 105 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑅 “ {(𝑀‘𝑤)})𝐹(𝑅 ∩ ((◡𝑅 “ {(𝑀‘𝑤)}) × (◡𝑅 “ {(𝑀‘𝑤)})))) = (𝑀‘𝑤)) |
| 107 | 6 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ dom 𝑁 → (𝑁‘𝑤) ∈ 𝑌) |
| 108 | 55, 107 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑁‘𝑤) ∈ 𝑌) |
| 109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑁‘𝑤) ∈ 𝑌) |
| 110 | 44, 45, 52 | fpwwe2lem3 9455 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑁‘𝑤) ∈ 𝑌) → ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) = (𝑁‘𝑤)) |
| 111 | 47, 109, 110 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → ((◡𝑆 “ {(𝑁‘𝑤)})𝐹(𝑆 ∩ ((◡𝑆 “ {(𝑁‘𝑤)}) × (◡𝑆 “ {(𝑁‘𝑤)})))) = (𝑁‘𝑤)) |
| 112 | 101, 106,
111 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ dom 𝑀) ∧ (𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤)) → (𝑀‘𝑤) = (𝑁‘𝑤)) |
| 113 | 112 | ex 450 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑀 ↾ 𝑤) = (𝑁 ↾ 𝑤) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
| 114 | 43, 113 | sylbird 250 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑀‘𝑦) = (𝑁‘𝑦) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
| 115 | 28, 114 | syld 47 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑤) = (𝑁‘𝑤))) |
| 116 | 115 | ex 450 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 117 | 116 | com23 86 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦)) → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 118 | 117 | a2i 14 |
. . . . . . . . 9
⊢ ((𝜑 → ∀𝑦 ∈ 𝑤 (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 119 | 21, 118 | sylbi 207 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 120 | 119 | a1i 11 |
. . . . . . 7
⊢ (𝑤 ∈ On → (∀𝑦 ∈ 𝑤 (𝜑 → (𝑦 ∈ dom 𝑀 → (𝑀‘𝑦) = (𝑁‘𝑦))) → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))))) |
| 121 | 20, 120 | tfis2 7056 |
. . . . . 6
⊢ (𝑤 ∈ On → (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 122 | 121 | com3l 89 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑤 ∈ On → (𝑀‘𝑤) = (𝑁‘𝑤)))) |
| 123 | 14, 122 | mpdi 45 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ dom 𝑀 → (𝑀‘𝑤) = (𝑁‘𝑤))) |
| 124 | 123 | imp 445 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) = (𝑁‘𝑤)) |
| 125 | | fvres 6207 |
. . . 4
⊢ (𝑤 ∈ dom 𝑀 → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁‘𝑤)) |
| 126 | 125 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → ((𝑁 ↾ dom 𝑀)‘𝑤) = (𝑁‘𝑤)) |
| 127 | 124, 126 | eqtr4d 2659 |
. 2
⊢ ((𝜑 ∧ 𝑤 ∈ dom 𝑀) → (𝑀‘𝑤) = ((𝑁 ↾ dom 𝑀)‘𝑤)) |
| 128 | 4, 11, 127 | eqfnfvd 6314 |
1
⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) |