MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Visualization version   GIF version

Theorem fseqenlem2 8848
Description: Lemma for fseqen 8850. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a (𝜑𝐴𝑉)
fseqenlem.b (𝜑𝐵𝐴)
fseqenlem.f (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
fseqenlem.g 𝐺 = seq𝜔((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴𝑚 suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
fseqenlem.k 𝐾 = (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
Assertion
Ref Expression
fseqenlem2 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴))
Distinct variable groups:   𝑦,𝐵   𝑓,𝑛,𝑥,𝐹   𝑦,𝑘,𝐺   𝑓,𝑘,𝑦,𝐴,𝑛,𝑥   𝜑,𝑘,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥,𝑓,𝑘,𝑛)   𝐹(𝑦,𝑘)   𝐺(𝑥,𝑓,𝑛)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑛)   𝑉(𝑥,𝑦,𝑓,𝑘,𝑛)

Proof of Theorem fseqenlem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4524 . . . . 5 (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↔ ∃𝑘 ∈ ω 𝑦 ∈ (𝐴𝑚 𝑘))
2 elmapi 7879 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝑚 𝑘) → 𝑦:𝑘𝐴)
32ad2antll 765 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑦:𝑘𝐴)
4 fdm 6051 . . . . . . . . 9 (𝑦:𝑘𝐴 → dom 𝑦 = 𝑘)
53, 4syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → dom 𝑦 = 𝑘)
6 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑘 ∈ ω)
75, 6eqeltrd 2701 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → dom 𝑦 ∈ ω)
85fveq2d 6195 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺‘dom 𝑦) = (𝐺𝑘))
98fveq1d 6193 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺𝑘)‘𝑦))
10 fseqenlem.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
11 fseqenlem.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
12 fseqenlem.f . . . . . . . . . . . 12 (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
13 fseqenlem.g . . . . . . . . . . . 12 𝐺 = seq𝜔((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴𝑚 suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
1410, 11, 12, 13fseqenlem1 8847 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ω) → (𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴)
1514adantrr 753 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴)
16 f1f 6101 . . . . . . . . . 10 ((𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴 → (𝐺𝑘):(𝐴𝑚 𝑘)⟶𝐴)
1715, 16syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺𝑘):(𝐴𝑚 𝑘)⟶𝐴)
18 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑦 ∈ (𝐴𝑚 𝑘))
1917, 18ffvelrnd 6360 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺𝑘)‘𝑦) ∈ 𝐴)
209, 19eqeltrd 2701 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) ∈ 𝐴)
21 opelxpi 5148 . . . . . . 7 ((dom 𝑦 ∈ ω ∧ ((𝐺‘dom 𝑦)‘𝑦) ∈ 𝐴) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
227, 20, 21syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
2322rexlimdvaa 3032 . . . . 5 (𝜑 → (∃𝑘 ∈ ω 𝑦 ∈ (𝐴𝑚 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
241, 23syl5bi 232 . . . 4 (𝜑 → (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
2524imp 445 . . 3 ((𝜑𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘)) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
26 fseqenlem.k . . 3 𝐾 = (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
2725, 26fmptd 6385 . 2 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴))
28 ffun 6048 . . . . . . . . . . . . . . 15 (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴) → Fun 𝐾)
29 funbrfv2b 6240 . . . . . . . . . . . . . . 15 (Fun 𝐾 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
3027, 28, 293syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
3130simplbda 654 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = 𝑤)
3230simprbda 653 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ dom 𝐾)
33 fdm 6051 . . . . . . . . . . . . . . . . 17 (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴) → dom 𝐾 = 𝑘 ∈ ω (𝐴𝑚 𝑘))
3427, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = 𝑘 ∈ ω (𝐴𝑚 𝑘))
3534adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → dom 𝐾 = 𝑘 ∈ ω (𝐴𝑚 𝑘))
3632, 35eleqtrd 2703 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐾𝑤) → 𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘))
37 dmeq 5324 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → dom 𝑦 = dom 𝑧)
3837fveq2d 6195 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐺‘dom 𝑦) = (𝐺‘dom 𝑧))
39 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧𝑦 = 𝑧)
4038, 39fveq12d 6197 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺‘dom 𝑧)‘𝑧))
4137, 40opeq12d 4410 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
42 opex 4932 . . . . . . . . . . . . . . 15 ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩ ∈ V
4341, 26, 42fvmpt 6282 . . . . . . . . . . . . . 14 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4436, 43syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4531, 44eqtr3d 2658 . . . . . . . . . . . 12 ((𝜑𝑧𝐾𝑤) → 𝑤 = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4645fveq2d 6195 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
47 vex 3203 . . . . . . . . . . . . 13 𝑧 ∈ V
4847dmex 7099 . . . . . . . . . . . 12 dom 𝑧 ∈ V
49 fvex 6201 . . . . . . . . . . . 12 ((𝐺‘dom 𝑧)‘𝑧) ∈ V
5048, 49op1st 7176 . . . . . . . . . . 11 (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = dom 𝑧
5146, 50syl6eq 2672 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = dom 𝑧)
5251fveq2d 6195 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5352cnveqd 5298 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5445fveq2d 6195 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
5548, 49op2nd 7177 . . . . . . . . 9 (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = ((𝐺‘dom 𝑧)‘𝑧)
5654, 55syl6eq 2672 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = ((𝐺‘dom 𝑧)‘𝑧))
5753, 56fveq12d 6197 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘(1st𝑤))‘(2nd𝑤)) = ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)))
58 eliun 4524 . . . . . . . . . . . . 13 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) ↔ ∃𝑘 ∈ ω 𝑧 ∈ (𝐴𝑚 𝑘))
59 elmapi 7879 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴𝑚 𝑘) → 𝑧:𝑘𝐴)
6059adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧:𝑘𝐴)
61 fdm 6051 . . . . . . . . . . . . . . . . 17 (𝑧:𝑘𝐴 → dom 𝑧 = 𝑘)
6260, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → dom 𝑧 = 𝑘)
63 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑘 ∈ ω)
6462, 63eqeltrd 2701 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → dom 𝑧 ∈ ω)
65 simpr 477 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧 ∈ (𝐴𝑚 𝑘))
6662oveq2d 6666 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → (𝐴𝑚 dom 𝑧) = (𝐴𝑚 𝑘))
6765, 66eleqtrrd 2704 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧 ∈ (𝐴𝑚 dom 𝑧))
6864, 67jca 554 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
6968rexlimiva 3028 . . . . . . . . . . . . 13 (∃𝑘 ∈ ω 𝑧 ∈ (𝐴𝑚 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
7058, 69sylbi 207 . . . . . . . . . . . 12 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
7136, 70syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
7271simpld 475 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → dom 𝑧 ∈ ω)
7310, 11, 12, 13fseqenlem1 8847 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑧 ∈ ω) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴)
7472, 73syldan 487 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴)
75 f1f1orn 6148 . . . . . . . . 9 ((𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴 → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7674, 75syl 17 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7771simprd 479 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ (𝐴𝑚 dom 𝑧))
78 f1ocnvfv1 6532 . . . . . . . 8 (((𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧) ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7976, 77, 78syl2anc 693 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
8057, 79eqtr2d 2657 . . . . . 6 ((𝜑𝑧𝐾𝑤) → 𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤)))
8180ex 450 . . . . 5 (𝜑 → (𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
8281alrimiv 1855 . . . 4 (𝜑 → ∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
83 mo2icl 3385 . . . 4 (∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))) → ∃*𝑧 𝑧𝐾𝑤)
8482, 83syl 17 . . 3 (𝜑 → ∃*𝑧 𝑧𝐾𝑤)
8584alrimiv 1855 . 2 (𝜑 → ∀𝑤∃*𝑧 𝑧𝐾𝑤)
86 dff12 6100 . 2 (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴) ↔ (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴) ∧ ∀𝑤∃*𝑧 𝑧𝐾𝑤))
8727, 85, 86sylanbrc 698 1 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  wrex 2913  Vcvv 3200  c0 3915  {csn 4177  cop 4183   ciun 4520   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  suc csuc 5725  Fun wfun 5882  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cmpt2 6652  ωcom 7065  1st c1st 7166  2nd c2nd 7167  seq𝜔cseqom 7542  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-map 7859
This theorem is referenced by:  fseqen  8850  pwfseqlem5  9485
  Copyright terms: Public domain W3C validator