MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Structured version   Visualization version   GIF version

Theorem fsnunfv 6453
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 5419 . . . . . . . . 9 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
2 incom 3805 . . . . . . . . 9 ({𝑋} ∩ dom 𝐹) = (dom 𝐹 ∩ {𝑋})
31, 2eqtri 2644 . . . . . . . 8 dom (𝐹 ↾ {𝑋}) = (dom 𝐹 ∩ {𝑋})
4 disjsn 4246 . . . . . . . . 9 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
54biimpri 218 . . . . . . . 8 𝑋 ∈ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
63, 5syl5eq 2668 . . . . . . 7 𝑋 ∈ dom 𝐹 → dom (𝐹 ↾ {𝑋}) = ∅)
763ad2ant3 1084 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → dom (𝐹 ↾ {𝑋}) = ∅)
8 relres 5426 . . . . . . 7 Rel (𝐹 ↾ {𝑋})
9 reldm0 5343 . . . . . . 7 (Rel (𝐹 ↾ {𝑋}) → ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅))
108, 9ax-mp 5 . . . . . 6 ((𝐹 ↾ {𝑋}) = ∅ ↔ dom (𝐹 ↾ {𝑋}) = ∅)
117, 10sylibr 224 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ {𝑋}) = ∅)
12 fnsng 5938 . . . . . . 7 ((𝑋𝑉𝑌𝑊) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
13123adant3 1081 . . . . . 6 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → {⟨𝑋, 𝑌⟩} Fn {𝑋})
14 fnresdm 6000 . . . . . 6 ({⟨𝑋, 𝑌⟩} Fn {𝑋} → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1513, 14syl 17 . . . . 5 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩} ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
1611, 15uneq12d 3768 . . . 4 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋})) = (∅ ∪ {⟨𝑋, 𝑌⟩}))
17 resundir 5411 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = ((𝐹 ↾ {𝑋}) ∪ ({⟨𝑋, 𝑌⟩} ↾ {𝑋}))
18 uncom 3757 . . . . 5 (∅ ∪ {⟨𝑋, 𝑌⟩}) = ({⟨𝑋, 𝑌⟩} ∪ ∅)
19 un0 3967 . . . . 5 ({⟨𝑋, 𝑌⟩} ∪ ∅) = {⟨𝑋, 𝑌⟩}
2018, 19eqtr2i 2645 . . . 4 {⟨𝑋, 𝑌⟩} = (∅ ∪ {⟨𝑋, 𝑌⟩})
2116, 17, 203eqtr4g 2681 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋}) = {⟨𝑋, 𝑌⟩})
2221fveq1d 6193 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ({⟨𝑋, 𝑌⟩}‘𝑋))
23 snidg 4206 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
24233ad2ant1 1082 . . 3 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → 𝑋 ∈ {𝑋})
25 fvres 6207 . . 3 (𝑋 ∈ {𝑋} → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
2624, 25syl 17 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → (((𝐹 ∪ {⟨𝑋, 𝑌⟩}) ↾ {𝑋})‘𝑋) = ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋))
27 fvsng 6447 . . 3 ((𝑋𝑉𝑌𝑊) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
28273adant3 1081 . 2 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ({⟨𝑋, 𝑌⟩}‘𝑋) = 𝑌)
2922, 26, 283eqtr3d 2664 1 ((𝑋𝑉𝑌𝑊 ∧ ¬ 𝑋 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩})‘𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  cun 3572  cin 3573  c0 3915  {csn 4177  cop 4183  dom cdm 5114  cres 5116  Rel wrel 5119   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  hashf1lem1  13239  cats1un  13475  fvsetsid  15890  islindf4  20177  wlkp1lem3  26572  wlkp1lem7  26576  wlkp1lem8  26577  eupth2eucrct  27077  mapfzcons2  37282  fnchoice  39188  nnsum4primeseven  41688  nnsum4primesevenALTV  41689
  Copyright terms: Public domain W3C validator