MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1un Structured version   Visualization version   GIF version

Theorem cats1un 13475
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}))

Proof of Theorem cats1un
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ccatws1cl 13396 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋)
2 wrdf 13310 . . . . 5 ((𝐴 ++ ⟨“𝐵”⟩) ∈ Word 𝑋 → (𝐴 ++ ⟨“𝐵”⟩):(0..^(#‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
31, 2syl 17 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):(0..^(#‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋)
4 ccatws1len 13398 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘(𝐴 ++ ⟨“𝐵”⟩)) = ((#‘𝐴) + 1))
54oveq2d 6666 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0..^(#‘(𝐴 ++ ⟨“𝐵”⟩))) = (0..^((#‘𝐴) + 1)))
6 lencl 13324 . . . . . . . . 9 (𝐴 ∈ Word 𝑋 → (#‘𝐴) ∈ ℕ0)
76adantr 481 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘𝐴) ∈ ℕ0)
8 nn0uz 11722 . . . . . . . 8 0 = (ℤ‘0)
97, 8syl6eleq 2711 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘𝐴) ∈ (ℤ‘0))
10 fzosplitsn 12576 . . . . . . 7 ((#‘𝐴) ∈ (ℤ‘0) → (0..^((#‘𝐴) + 1)) = ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
119, 10syl 17 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0..^((#‘𝐴) + 1)) = ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
125, 11eqtrd 2656 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0..^(#‘(𝐴 ++ ⟨“𝐵”⟩))) = ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
1312feq2d 6031 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩):(0..^(#‘(𝐴 ++ ⟨“𝐵”⟩)))⟶𝑋 ↔ (𝐴 ++ ⟨“𝐵”⟩):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶𝑋))
143, 13mpbid 222 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶𝑋)
15 ffn 6045 . . 3 ((𝐴 ++ ⟨“𝐵”⟩):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶𝑋 → (𝐴 ++ ⟨“𝐵”⟩) Fn ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
1614, 15syl 17 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) Fn ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
17 wrdf 13310 . . . . 5 (𝐴 ∈ Word 𝑋𝐴:(0..^(#‘𝐴))⟶𝑋)
1817adantr 481 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴:(0..^(#‘𝐴))⟶𝑋)
19 eqid 2622 . . . . . 6 {⟨(#‘𝐴), 𝐵⟩} = {⟨(#‘𝐴), 𝐵⟩}
20 fsng 6404 . . . . . 6 (((#‘𝐴) ∈ ℕ0𝐵𝑋) → ({⟨(#‘𝐴), 𝐵⟩}:{(#‘𝐴)}⟶{𝐵} ↔ {⟨(#‘𝐴), 𝐵⟩} = {⟨(#‘𝐴), 𝐵⟩}))
2119, 20mpbiri 248 . . . . 5 (((#‘𝐴) ∈ ℕ0𝐵𝑋) → {⟨(#‘𝐴), 𝐵⟩}:{(#‘𝐴)}⟶{𝐵})
226, 21sylan 488 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → {⟨(#‘𝐴), 𝐵⟩}:{(#‘𝐴)}⟶{𝐵})
23 fzonel 12483 . . . . . 6 ¬ (#‘𝐴) ∈ (0..^(#‘𝐴))
2423a1i 11 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ¬ (#‘𝐴) ∈ (0..^(#‘𝐴)))
25 disjsn 4246 . . . . 5 (((0..^(#‘𝐴)) ∩ {(#‘𝐴)}) = ∅ ↔ ¬ (#‘𝐴) ∈ (0..^(#‘𝐴)))
2624, 25sylibr 224 . . . 4 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((0..^(#‘𝐴)) ∩ {(#‘𝐴)}) = ∅)
27 fun 6066 . . . 4 (((𝐴:(0..^(#‘𝐴))⟶𝑋 ∧ {⟨(#‘𝐴), 𝐵⟩}:{(#‘𝐴)}⟶{𝐵}) ∧ ((0..^(#‘𝐴)) ∩ {(#‘𝐴)}) = ∅) → (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶(𝑋 ∪ {𝐵}))
2818, 22, 26, 27syl21anc 1325 . . 3 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶(𝑋 ∪ {𝐵}))
29 ffn 6045 . . 3 ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}):((0..^(#‘𝐴)) ∪ {(#‘𝐴)})⟶(𝑋 ∪ {𝐵}) → (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}) Fn ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
3028, 29syl 17 . 2 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}) Fn ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}))
31 elun 3753 . . 3 (𝑥 ∈ ((0..^(#‘𝐴)) ∪ {(#‘𝐴)}) ↔ (𝑥 ∈ (0..^(#‘𝐴)) ∨ 𝑥 ∈ {(#‘𝐴)}))
32 ccats1val1 13403 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋𝑥 ∈ (0..^(#‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
33323expa 1265 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = (𝐴𝑥))
34 simpr 477 . . . . . . . 8 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → 𝑥 ∈ (0..^(#‘𝐴)))
35 nelne2 2891 . . . . . . . 8 ((𝑥 ∈ (0..^(#‘𝐴)) ∧ ¬ (#‘𝐴) ∈ (0..^(#‘𝐴))) → 𝑥 ≠ (#‘𝐴))
3634, 23, 35sylancl 694 . . . . . . 7 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → 𝑥 ≠ (#‘𝐴))
3736necomd 2849 . . . . . 6 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → (#‘𝐴) ≠ 𝑥)
38 fvunsn 6445 . . . . . 6 ((#‘𝐴) ≠ 𝑥 → ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
3937, 38syl 17 . . . . 5 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥) = (𝐴𝑥))
4033, 39eqtr4d 2659 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ (0..^(#‘𝐴))) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥))
41 fvexd 6203 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘𝐴) ∈ V)
42 elex 3212 . . . . . . . . 9 (𝐵𝑋𝐵 ∈ V)
4342adantl 482 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐵 ∈ V)
44 fdm 6051 . . . . . . . . . . 11 (𝐴:(0..^(#‘𝐴))⟶𝑋 → dom 𝐴 = (0..^(#‘𝐴)))
4518, 44syl 17 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → dom 𝐴 = (0..^(#‘𝐴)))
4645eleq2d 2687 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((#‘𝐴) ∈ dom 𝐴 ↔ (#‘𝐴) ∈ (0..^(#‘𝐴))))
4723, 46mtbiri 317 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ¬ (#‘𝐴) ∈ dom 𝐴)
48 fsnunfv 6453 . . . . . . . 8 (((#‘𝐴) ∈ V ∧ 𝐵 ∈ V ∧ ¬ (#‘𝐴) ∈ dom 𝐴) → ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘(#‘𝐴)) = 𝐵)
4941, 43, 47, 48syl3anc 1326 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘(#‘𝐴)) = 𝐵)
50 simpl 473 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 𝐴 ∈ Word 𝑋)
51 s1cl 13382 . . . . . . . . . 10 (𝐵𝑋 → ⟨“𝐵”⟩ ∈ Word 𝑋)
5251adantl 482 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ⟨“𝐵”⟩ ∈ Word 𝑋)
53 s1len 13385 . . . . . . . . . . . 12 (#‘⟨“𝐵”⟩) = 1
54 1nn 11031 . . . . . . . . . . . 12 1 ∈ ℕ
5553, 54eqeltri 2697 . . . . . . . . . . 11 (#‘⟨“𝐵”⟩) ∈ ℕ
5655a1i 11 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘⟨“𝐵”⟩) ∈ ℕ)
57 lbfzo0 12507 . . . . . . . . . 10 (0 ∈ (0..^(#‘⟨“𝐵”⟩)) ↔ (#‘⟨“𝐵”⟩) ∈ ℕ)
5856, 57sylibr 224 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → 0 ∈ (0..^(#‘⟨“𝐵”⟩)))
59 ccatval3 13363 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋 ∧ ⟨“𝐵”⟩ ∈ Word 𝑋 ∧ 0 ∈ (0..^(#‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = (⟨“𝐵”⟩‘0))
6050, 52, 58, 59syl3anc 1326 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = (⟨“𝐵”⟩‘0))
61 s1fv 13390 . . . . . . . . 9 (𝐵𝑋 → (⟨“𝐵”⟩‘0) = 𝐵)
6261adantl 482 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (⟨“𝐵”⟩‘0) = 𝐵)
6360, 62eqtrd 2656 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = 𝐵)
647nn0cnd 11353 . . . . . . . . 9 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (#‘𝐴) ∈ ℂ)
6564addid2d 10237 . . . . . . . 8 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (0 + (#‘𝐴)) = (#‘𝐴))
6665fveq2d 6195 . . . . . . 7 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (#‘𝐴))) = ((𝐴 ++ ⟨“𝐵”⟩)‘(#‘𝐴)))
6749, 63, 663eqtr2rd 2663 . . . . . 6 ((𝐴 ∈ Word 𝑋𝐵𝑋) → ((𝐴 ++ ⟨“𝐵”⟩)‘(#‘𝐴)) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘(#‘𝐴)))
68 elsni 4194 . . . . . . . 8 (𝑥 ∈ {(#‘𝐴)} → 𝑥 = (#‘𝐴))
6968fveq2d 6195 . . . . . . 7 (𝑥 ∈ {(#‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ++ ⟨“𝐵”⟩)‘(#‘𝐴)))
7068fveq2d 6195 . . . . . . 7 (𝑥 ∈ {(#‘𝐴)} → ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘(#‘𝐴)))
7169, 70eqeq12d 2637 . . . . . 6 (𝑥 ∈ {(#‘𝐴)} → (((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥) ↔ ((𝐴 ++ ⟨“𝐵”⟩)‘(#‘𝐴)) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘(#‘𝐴))))
7267, 71syl5ibrcom 237 . . . . 5 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝑥 ∈ {(#‘𝐴)} → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥)))
7372imp 445 . . . 4 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ {(#‘𝐴)}) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥))
7440, 73jaodan 826 . . 3 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ (𝑥 ∈ (0..^(#‘𝐴)) ∨ 𝑥 ∈ {(#‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥))
7531, 74sylan2b 492 . 2 (((𝐴 ∈ Word 𝑋𝐵𝑋) ∧ 𝑥 ∈ ((0..^(#‘𝐴)) ∪ {(#‘𝐴)})) → ((𝐴 ++ ⟨“𝐵”⟩)‘𝑥) = ((𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩})‘𝑥))
7616, 30, 75eqfnfvd 6314 1 ((𝐴 ∈ Word 𝑋𝐵𝑋) → (𝐴 ++ ⟨“𝐵”⟩) = (𝐴 ∪ {⟨(#‘𝐴), 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177  cop 4183  dom cdm 5114   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  0cn0 11292  cuz 11687  ..^cfzo 12465  #chash 13117  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302
This theorem is referenced by:  s2prop  13652  s3tpop  13654  s4prop  13655  pgpfaclem1  18480  vdegp1ai  26432  vdegp1bi  26433  wwlksnext  26788
  Copyright terms: Public domain W3C validator