MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem8 Structured version   Visualization version   GIF version

Theorem wlkp1lem8 26577
Description: Lemma for wlkp1 26578. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵 ∈ V)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (#‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
wlkp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
wlkp1lem8 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑁   𝑃,𝑘   𝑄,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝑆,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐸(𝑘)   𝐼(𝑘)   𝑉(𝑘)

Proof of Theorem wlkp1lem8
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 wlkp1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 wlkp1.f . . . 4 (𝜑 → Fun 𝐼)
4 wlkp1.a . . . 4 (𝜑𝐼 ∈ Fin)
5 wlkp1.b . . . 4 (𝜑𝐵 ∈ V)
6 wlkp1.c . . . 4 (𝜑𝐶𝑉)
7 wlkp1.d . . . 4 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 wlkp1.w . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.n . . . 4 𝑁 = (#‘𝐹)
10 wlkp1.e . . . 4 (𝜑𝐸 ∈ (Edg‘𝐺))
11 wlkp1.x . . . 4 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 wlkp1.u . . . 4 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
13 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem6 26575 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
1710elfvexd 6222 . . . . . 6 (𝜑𝐺 ∈ V)
181, 2iswlkg 26509 . . . . . 6 (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1917, 18syl 17 . . . . 5 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
209eqcomi 2631 . . . . . . . . 9 (#‘𝐹) = 𝑁
2120oveq2i 6661 . . . . . . . 8 (0..^(#‘𝐹)) = (0..^𝑁)
2221raleqi 3142 . . . . . . 7 (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2322biimpi 206 . . . . . 6 (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
24233ad2ant3 1084 . . . . 5 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2519, 24syl6bi 243 . . . 4 (𝜑 → (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
268, 25mpd 15 . . 3 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
27 eqeq12 2635 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
28273adant3 1081 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
29 simp3 1063 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
30 simp1 1061 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (𝑄𝑘) = (𝑃𝑘))
3130sneqd 4189 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘)} = {(𝑃𝑘)})
3229, 31eqeq12d 2637 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
33 preq12 4270 . . . . . . . 8 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
34333adant3 1081 . . . . . . 7 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3534, 29sseq12d 3634 . . . . . 6 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → ({(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3628, 32, 35ifpbi123d 1027 . . . . 5 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3736biimprd 238 . . . 4 (((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3837ral2imi 2947 . . 3 (∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))) → (∀𝑘 ∈ (0..^𝑁)if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
3916, 26, 38sylc 65 . 2 (𝜑 → ∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem3 26572 . . . . 5 (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
4140adantr 481 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
425, 10, 73jca 1242 . . . . . 6 (𝜑 → (𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
4342adantr 481 . . . . 5 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → (𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼))
44 fsnunfv 6453 . . . . 5 ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
4543, 44syl 17 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵) = 𝐸)
46 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
47 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4846, 47eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑁 → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄𝑁) = (𝑃𝑁)))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 26574 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥))
502wlkf 26510 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
51 lencl 13324 . . . . . . . . . . 11 (𝐹 ∈ Word dom 𝐼 → (#‘𝐹) ∈ ℕ0)
529eleq1i 2692 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 ↔ (#‘𝐹) ∈ ℕ0)
53 elnn0uz 11725 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5452, 53sylbb1 227 . . . . . . . . . . 11 ((#‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5551, 54syl 17 . . . . . . . . . 10 (𝐹 ∈ Word dom 𝐼𝑁 ∈ (ℤ‘0))
568, 50, 553syl 18 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘0))
5756, 53sylibr 224 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
58 nn0fz0 12437 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
5957, 58sylib 208 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
6048, 49, 59rspcdva 3316 . . . . . 6 (𝜑 → (𝑄𝑁) = (𝑃𝑁))
6114fveq1i 6192 . . . . . . . . . . 11 (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1))
62 ovex 6678 . . . . . . . . . . . 12 (𝑁 + 1) ∈ V
631, 2, 3, 4, 5, 6, 7, 8, 9wlkp1lem1 26570 . . . . . . . . . . . 12 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
64 fsnunfv 6453 . . . . . . . . . . . 12 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6562, 6, 63, 64mp3an2i 1429 . . . . . . . . . . 11 (𝜑 → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
6661, 65syl5eq 2668 . . . . . . . . . 10 (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶)
6766eqeq2d 2632 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = 𝐶))
68 eqcom 2629 . . . . . . . . 9 ((𝑃𝑁) = 𝐶𝐶 = (𝑃𝑁))
6967, 68syl6bb 276 . . . . . . . 8 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) ↔ 𝐶 = (𝑃𝑁)))
70 wlkp1.l . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
71 sneq 4187 . . . . . . . . . . 11 (𝐶 = (𝑃𝑁) → {𝐶} = {(𝑃𝑁)})
7271adantl 482 . . . . . . . . . 10 ((𝜑𝐶 = (𝑃𝑁)) → {𝐶} = {(𝑃𝑁)})
7370, 72eqtrd 2656 . . . . . . . . 9 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {(𝑃𝑁)})
7473ex 450 . . . . . . . 8 (𝜑 → (𝐶 = (𝑃𝑁) → 𝐸 = {(𝑃𝑁)}))
7569, 74sylbid 230 . . . . . . 7 (𝜑 → ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)}))
76 eqeq1 2626 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) ↔ (𝑃𝑁) = (𝑄‘(𝑁 + 1))))
77 sneq 4187 . . . . . . . . 9 ((𝑄𝑁) = (𝑃𝑁) → {(𝑄𝑁)} = {(𝑃𝑁)})
7877eqeq2d 2632 . . . . . . . 8 ((𝑄𝑁) = (𝑃𝑁) → (𝐸 = {(𝑄𝑁)} ↔ 𝐸 = {(𝑃𝑁)}))
7976, 78imbi12d 334 . . . . . . 7 ((𝑄𝑁) = (𝑃𝑁) → (((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}) ↔ ((𝑃𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑃𝑁)})))
8075, 79syl5ibrcom 237 . . . . . 6 (𝜑 → ((𝑄𝑁) = (𝑃𝑁) → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)})))
8160, 80mpd 15 . . . . 5 (𝜑 → ((𝑄𝑁) = (𝑄‘(𝑁 + 1)) → 𝐸 = {(𝑄𝑁)}))
8281imp 445 . . . 4 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → 𝐸 = {(𝑄𝑁)})
8341, 45, 823eqtrd 2660 . . 3 ((𝜑 ∧ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)})
841, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem7 26576 . . . 4 (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8584adantr 481 . . 3 ((𝜑 ∧ ¬ (𝑄𝑁) = (𝑄‘(𝑁 + 1))) → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
8683, 85ifpimpda 1028 . 2 (𝜑 → if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))
871, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13wlkp1lem2 26571 . . . . . 6 (𝜑 → (#‘𝐻) = (𝑁 + 1))
8887oveq2d 6666 . . . . 5 (𝜑 → (0..^(#‘𝐻)) = (0..^(𝑁 + 1)))
89 fzosplitsn 12576 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9056, 89syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
9188, 90eqtrd 2656 . . . 4 (𝜑 → (0..^(#‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
9291raleqdv 3144 . . 3 (𝜑 → (∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ ∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
93 ralunb 3794 . . . 4 (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))))
9493a1i 11 . . 3 (𝜑 → (∀𝑘 ∈ ((0..^𝑁) ∪ {𝑁})if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))))
95 fvex 6201 . . . . . 6 (#‘𝐹) ∈ V
969, 95eqeltri 2697 . . . . 5 𝑁 ∈ V
97 fveq2 6191 . . . . . . . 8 (𝑘 = 𝑁 → (𝑄𝑘) = (𝑄𝑁))
98 oveq1 6657 . . . . . . . . 9 (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1))
9998fveq2d 6195 . . . . . . . 8 (𝑘 = 𝑁 → (𝑄‘(𝑘 + 1)) = (𝑄‘(𝑁 + 1)))
10097, 99eqeq12d 2637 . . . . . . 7 (𝑘 = 𝑁 → ((𝑄𝑘) = (𝑄‘(𝑘 + 1)) ↔ (𝑄𝑁) = (𝑄‘(𝑁 + 1))))
101 fveq2 6191 . . . . . . . . 9 (𝑘 = 𝑁 → (𝐻𝑘) = (𝐻𝑁))
102101fveq2d 6195 . . . . . . . 8 (𝑘 = 𝑁 → ((iEdg‘𝑆)‘(𝐻𝑘)) = ((iEdg‘𝑆)‘(𝐻𝑁)))
10397sneqd 4189 . . . . . . . 8 (𝑘 = 𝑁 → {(𝑄𝑘)} = {(𝑄𝑁)})
104102, 103eqeq12d 2637 . . . . . . 7 (𝑘 = 𝑁 → (((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)} ↔ ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}))
10597, 99preq12d 4276 . . . . . . . 8 (𝑘 = 𝑁 → {(𝑄𝑘), (𝑄‘(𝑘 + 1))} = {(𝑄𝑁), (𝑄‘(𝑁 + 1))})
106105, 102sseq12d 3634 . . . . . . 7 (𝑘 = 𝑁 → ({(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)) ↔ {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))
107100, 104, 106ifpbi123d 1027 . . . . . 6 (𝑘 = 𝑁 → (if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
108107ralsng 4218 . . . . 5 (𝑁 ∈ V → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
10996, 108mp1i 13 . . . 4 (𝜑 → (∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))))
110109anbi2d 740 . . 3 (𝜑 → ((∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ ∀𝑘 ∈ {𝑁}if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘)))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
11192, 94, 1103bitrd 294 . 2 (𝜑 → (∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ↔ (∀𝑘 ∈ (0..^𝑁)if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))) ∧ if-((𝑄𝑁) = (𝑄‘(𝑁 + 1)), ((iEdg‘𝑆)‘(𝐻𝑁)) = {(𝑄𝑁)}, {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁))))))
11239, 86, 111mpbir2and 957 1 (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  if-wif 1012  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574  {csn 4177  {cpr 4179  cop 4183   class class class wbr 4653  dom cdm 5114  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  cuz 11687  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  wlkp1  26578
  Copyright terms: Public domain W3C validator