![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem7 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 26578. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ V) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (#‘𝐹) |
wlkp1.e | ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
wlkp1.x | ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
wlkp1.u | ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
wlkp1.h | ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
wlkp1.q | ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
wlkp1.s | ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
Ref | Expression |
---|---|
wlkp1lem7 | ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.x | . . 3 ⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) | |
2 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑄‘𝑘) = (𝑄‘𝑁)) | |
3 | fveq2 6191 | . . . . . 6 ⊢ (𝑘 = 𝑁 → (𝑃‘𝑘) = (𝑃‘𝑁)) | |
4 | 2, 3 | eqeq12d 2637 | . . . . 5 ⊢ (𝑘 = 𝑁 → ((𝑄‘𝑘) = (𝑃‘𝑘) ↔ (𝑄‘𝑁) = (𝑃‘𝑁))) |
5 | wlkp1.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | wlkp1.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | wlkp1.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
8 | wlkp1.a | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
9 | wlkp1.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) | |
10 | wlkp1.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | wlkp1.d | . . . . . 6 ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) | |
12 | wlkp1.w | . . . . . 6 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
13 | wlkp1.n | . . . . . 6 ⊢ 𝑁 = (#‘𝐹) | |
14 | wlkp1.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) | |
15 | wlkp1.u | . . . . . 6 ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) | |
16 | wlkp1.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) | |
17 | wlkp1.q | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) | |
18 | wlkp1.s | . . . . . 6 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) | |
19 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16, 17, 18 | wlkp1lem5 26574 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄‘𝑘) = (𝑃‘𝑘)) |
20 | wlkcl 26511 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0) | |
21 | 13 | eqcomi 2631 | . . . . . . . 8 ⊢ (#‘𝐹) = 𝑁 |
22 | 21 | eleq1i 2692 | . . . . . . 7 ⊢ ((#‘𝐹) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0) |
23 | nn0fz0 12437 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (0...𝑁)) | |
24 | 22, 23 | sylbb 209 | . . . . . 6 ⊢ ((#‘𝐹) ∈ ℕ0 → 𝑁 ∈ (0...𝑁)) |
25 | 12, 20, 24 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0...𝑁)) |
26 | 4, 19, 25 | rspcdva 3316 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) = (𝑃‘𝑁)) |
27 | 17 | fveq1i 6192 | . . . . 5 ⊢ (𝑄‘(𝑁 + 1)) = ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) |
28 | ovex 6678 | . . . . . 6 ⊢ (𝑁 + 1) ∈ V | |
29 | 5, 6, 7, 8, 9, 10, 11, 12, 13 | wlkp1lem1 26570 | . . . . . 6 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
30 | fsnunfv 6453 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) | |
31 | 28, 10, 29, 30 | mp3an2i 1429 | . . . . 5 ⊢ (𝜑 → ((𝑃 ∪ {〈(𝑁 + 1), 𝐶〉})‘(𝑁 + 1)) = 𝐶) |
32 | 27, 31 | syl5eq 2668 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑁 + 1)) = 𝐶) |
33 | 26, 32 | preq12d 4276 | . . 3 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} = {(𝑃‘𝑁), 𝐶}) |
34 | fsnunfv 6453 | . . . 4 ⊢ ((𝐵 ∈ V ∧ 𝐸 ∈ (Edg‘𝐺) ∧ ¬ 𝐵 ∈ dom 𝐼) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) | |
35 | 9, 14, 11, 34 | syl3anc 1326 | . . 3 ⊢ (𝜑 → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵) = 𝐸) |
36 | 1, 33, 35 | 3sstr4d 3648 | . 2 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
37 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 15, 16 | wlkp1lem3 26572 | . 2 ⊢ (𝜑 → ((iEdg‘𝑆)‘(𝐻‘𝑁)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘𝐵)) |
38 | 36, 37 | sseqtr4d 3642 | 1 ⊢ (𝜑 → {(𝑄‘𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 {csn 4177 {cpr 4179 〈cop 4183 class class class wbr 4653 dom cdm 5114 Fun wfun 5882 ‘cfv 5888 (class class class)co 6650 Fincfn 7955 0cc0 9936 1c1 9937 + caddc 9939 ℕ0cn0 11292 ...cfz 12326 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 Walkscwlks 26492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-wlks 26495 |
This theorem is referenced by: wlkp1lem8 26577 |
Copyright terms: Public domain | W3C validator |