| Step | Hyp | Ref
| Expression |
| 1 | | f1f 6101 |
. . . . . 6
⊢ (𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵 → 𝑓:(𝐴 ∪ {𝑧})⟶𝐵) |
| 2 | 1 | adantl 482 |
. . . . 5
⊢ (((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵) → 𝑓:(𝐴 ∪ {𝑧})⟶𝐵) |
| 3 | | hashf1lem2.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 4 | | hashf1lem2.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 5 | | snfi 8038 |
. . . . . . 7
⊢ {𝑧} ∈ Fin |
| 6 | | unfi 8227 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin) |
| 7 | 4, 5, 6 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ {𝑧}) ∈ Fin) |
| 8 | 3, 7 | elmapd 7871 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑𝑚 (𝐴 ∪ {𝑧})) ↔ 𝑓:(𝐴 ∪ {𝑧})⟶𝐵)) |
| 9 | 2, 8 | syl5ibr 236 |
. . . 4
⊢ (𝜑 → (((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵) → 𝑓 ∈ (𝐵 ↑𝑚 (𝐴 ∪ {𝑧})))) |
| 10 | 9 | abssdv 3676 |
. . 3
⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ⊆ (𝐵 ↑𝑚 (𝐴 ∪ {𝑧}))) |
| 11 | | ovex 6678 |
. . 3
⊢ (𝐵 ↑𝑚
(𝐴 ∪ {𝑧})) ∈ V |
| 12 | | ssexg 4804 |
. . 3
⊢ (({𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ⊆ (𝐵 ↑𝑚 (𝐴 ∪ {𝑧})) ∧ (𝐵 ↑𝑚 (𝐴 ∪ {𝑧})) ∈ V) → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ∈ V) |
| 13 | 10, 11, 12 | sylancl 694 |
. 2
⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ∈ V) |
| 14 | | difexg 4808 |
. . 3
⊢ (𝐵 ∈ Fin → (𝐵 ∖ ran 𝐹) ∈ V) |
| 15 | 3, 14 | syl 17 |
. 2
⊢ (𝜑 → (𝐵 ∖ ran 𝐹) ∈ V) |
| 16 | | vex 3203 |
. . . 4
⊢ 𝑔 ∈ V |
| 17 | | reseq1 5390 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝐴) = (𝑔 ↾ 𝐴)) |
| 18 | 17 | eqeq1d 2624 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 ↾ 𝐴) = 𝐹 ↔ (𝑔 ↾ 𝐴) = 𝐹)) |
| 19 | | f1eq1 6096 |
. . . . 5
⊢ (𝑓 = 𝑔 → (𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵 ↔ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) |
| 20 | 18, 19 | anbi12d 747 |
. . . 4
⊢ (𝑓 = 𝑔 → (((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵) ↔ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵))) |
| 21 | 16, 20 | elab 3350 |
. . 3
⊢ (𝑔 ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ↔ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) |
| 22 | | f1f 6101 |
. . . . . . 7
⊢ (𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵 → 𝑔:(𝐴 ∪ {𝑧})⟶𝐵) |
| 23 | 22 | ad2antll 765 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → 𝑔:(𝐴 ∪ {𝑧})⟶𝐵) |
| 24 | | ssun2 3777 |
. . . . . . 7
⊢ {𝑧} ⊆ (𝐴 ∪ {𝑧}) |
| 25 | | vex 3203 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 26 | 25 | snss 4316 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴 ∪ {𝑧}) ↔ {𝑧} ⊆ (𝐴 ∪ {𝑧})) |
| 27 | 24, 26 | mpbir 221 |
. . . . . 6
⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
| 28 | | ffvelrn 6357 |
. . . . . 6
⊢ ((𝑔:(𝐴 ∪ {𝑧})⟶𝐵 ∧ 𝑧 ∈ (𝐴 ∪ {𝑧})) → (𝑔‘𝑧) ∈ 𝐵) |
| 29 | 23, 27, 28 | sylancl 694 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → (𝑔‘𝑧) ∈ 𝐵) |
| 30 | | hashf1lem2.3 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑧 ∈ 𝐴) |
| 31 | 30 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ¬ 𝑧 ∈ 𝐴) |
| 32 | | df-ima 5127 |
. . . . . . . . 9
⊢ (𝑔 “ 𝐴) = ran (𝑔 ↾ 𝐴) |
| 33 | | simprl 794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → (𝑔 ↾ 𝐴) = 𝐹) |
| 34 | 33 | rneqd 5353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ran (𝑔 ↾ 𝐴) = ran 𝐹) |
| 35 | 32, 34 | syl5eq 2668 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → (𝑔 “ 𝐴) = ran 𝐹) |
| 36 | 35 | eleq2d 2687 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ((𝑔‘𝑧) ∈ (𝑔 “ 𝐴) ↔ (𝑔‘𝑧) ∈ ran 𝐹)) |
| 37 | | simprr 796 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) |
| 38 | 27 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → 𝑧 ∈ (𝐴 ∪ {𝑧})) |
| 39 | | ssun1 3776 |
. . . . . . . . 9
⊢ 𝐴 ⊆ (𝐴 ∪ {𝑧}) |
| 40 | 39 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → 𝐴 ⊆ (𝐴 ∪ {𝑧})) |
| 41 | | f1elima 6520 |
. . . . . . . 8
⊢ ((𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵 ∧ 𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ 𝐴 ⊆ (𝐴 ∪ {𝑧})) → ((𝑔‘𝑧) ∈ (𝑔 “ 𝐴) ↔ 𝑧 ∈ 𝐴)) |
| 42 | 37, 38, 40, 41 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ((𝑔‘𝑧) ∈ (𝑔 “ 𝐴) ↔ 𝑧 ∈ 𝐴)) |
| 43 | 36, 42 | bitr3d 270 |
. . . . . 6
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ((𝑔‘𝑧) ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐴)) |
| 44 | 31, 43 | mtbird 315 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → ¬ (𝑔‘𝑧) ∈ ran 𝐹) |
| 45 | 29, 44 | eldifd 3585 |
. . . 4
⊢ ((𝜑 ∧ ((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵)) → (𝑔‘𝑧) ∈ (𝐵 ∖ ran 𝐹)) |
| 46 | 45 | ex 450 |
. . 3
⊢ (𝜑 → (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) → (𝑔‘𝑧) ∈ (𝐵 ∖ ran 𝐹))) |
| 47 | 21, 46 | syl5bi 232 |
. 2
⊢ (𝜑 → (𝑔 ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} → (𝑔‘𝑧) ∈ (𝐵 ∖ ran 𝐹))) |
| 48 | | hashf1lem1.5 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) |
| 49 | | f1f 6101 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| 50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 51 | 50 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹:𝐴⟶𝐵) |
| 52 | | vex 3203 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 53 | 25, 52 | f1osn 6176 |
. . . . . . 7
⊢
{〈𝑧, 𝑥〉}:{𝑧}–1-1-onto→{𝑥} |
| 54 | | f1of 6137 |
. . . . . . 7
⊢
({〈𝑧, 𝑥〉}:{𝑧}–1-1-onto→{𝑥} → {〈𝑧, 𝑥〉}:{𝑧}⟶{𝑥}) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . 6
⊢
{〈𝑧, 𝑥〉}:{𝑧}⟶{𝑥} |
| 56 | | eldifi 3732 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ ran 𝐹) → 𝑥 ∈ 𝐵) |
| 57 | 56 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝑥 ∈ 𝐵) |
| 58 | 57 | snssd 4340 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {𝑥} ⊆ 𝐵) |
| 59 | | fss 6056 |
. . . . . 6
⊢
(({〈𝑧, 𝑥〉}:{𝑧}⟶{𝑥} ∧ {𝑥} ⊆ 𝐵) → {〈𝑧, 𝑥〉}:{𝑧}⟶𝐵) |
| 60 | 55, 58, 59 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {〈𝑧, 𝑥〉}:{𝑧}⟶𝐵) |
| 61 | | res0 5400 |
. . . . . . 7
⊢ (𝐹 ↾ ∅) =
∅ |
| 62 | | res0 5400 |
. . . . . . 7
⊢
({〈𝑧, 𝑥〉} ↾ ∅) =
∅ |
| 63 | 61, 62 | eqtr4i 2647 |
. . . . . 6
⊢ (𝐹 ↾ ∅) =
({〈𝑧, 𝑥〉} ↾
∅) |
| 64 | | disjsn 4246 |
. . . . . . . . 9
⊢ ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝐴) |
| 65 | 30, 64 | sylibr 224 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ {𝑧}) = ∅) |
| 66 | 65 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐴 ∩ {𝑧}) = ∅) |
| 67 | 66 | reseq2d 5396 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ↾ (𝐴 ∩ {𝑧})) = (𝐹 ↾ ∅)) |
| 68 | 66 | reseq2d 5396 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ({〈𝑧, 𝑥〉} ↾ (𝐴 ∩ {𝑧})) = ({〈𝑧, 𝑥〉} ↾ ∅)) |
| 69 | 63, 67, 68 | 3eqtr4a 2682 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ↾ (𝐴 ∩ {𝑧})) = ({〈𝑧, 𝑥〉} ↾ (𝐴 ∩ {𝑧}))) |
| 70 | | fresaunres1 6077 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ {〈𝑧, 𝑥〉}:{𝑧}⟶𝐵 ∧ (𝐹 ↾ (𝐴 ∩ {𝑧})) = ({〈𝑧, 𝑥〉} ↾ (𝐴 ∩ {𝑧}))) → ((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹) |
| 71 | 51, 60, 69, 70 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹) |
| 72 | | f1f1orn 6148 |
. . . . . . . . 9
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
| 73 | 48, 72 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
| 74 | 73 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹:𝐴–1-1-onto→ran
𝐹) |
| 75 | 53 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {〈𝑧, 𝑥〉}:{𝑧}–1-1-onto→{𝑥}) |
| 76 | | eldifn 3733 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∖ ran 𝐹) → ¬ 𝑥 ∈ ran 𝐹) |
| 77 | 76 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ¬ 𝑥 ∈ ran 𝐹) |
| 78 | | disjsn 4246 |
. . . . . . . 8
⊢ ((ran
𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹) |
| 79 | 77, 78 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (ran 𝐹 ∩ {𝑥}) = ∅) |
| 80 | | f1oun 6156 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1-onto→ran
𝐹 ∧ {〈𝑧, 𝑥〉}:{𝑧}–1-1-onto→{𝑥}) ∧ ((𝐴 ∩ {𝑧}) = ∅ ∧ (ran 𝐹 ∩ {𝑥}) = ∅)) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1-onto→(ran
𝐹 ∪ {𝑥})) |
| 81 | 74, 75, 66, 79, 80 | syl22anc 1327 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1-onto→(ran
𝐹 ∪ {𝑥})) |
| 82 | | f1of1 6136 |
. . . . . 6
⊢ ((𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1-onto→(ran
𝐹 ∪ {𝑥}) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥})) |
| 83 | 81, 82 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥})) |
| 84 | | frn 6053 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| 85 | 51, 84 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ran 𝐹 ⊆ 𝐵) |
| 86 | 85, 58 | unssd 3789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (ran 𝐹 ∪ {𝑥}) ⊆ 𝐵) |
| 87 | | f1ss 6106 |
. . . . 5
⊢ (((𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥}) ∧ (ran 𝐹 ∪ {𝑥}) ⊆ 𝐵) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵) |
| 88 | 83, 86, 87 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵) |
| 89 | | fex 6490 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ V) |
| 90 | 50, 4, 89 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ V) |
| 91 | 90 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹 ∈ V) |
| 92 | | snex 4908 |
. . . . . 6
⊢
{〈𝑧, 𝑥〉} ∈
V |
| 93 | | unexg 6959 |
. . . . . 6
⊢ ((𝐹 ∈ V ∧ {〈𝑧, 𝑥〉} ∈ V) → (𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ V) |
| 94 | 91, 92, 93 | sylancl 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ V) |
| 95 | | reseq1 5390 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∪ {〈𝑧, 𝑥〉}) → (𝑓 ↾ 𝐴) = ((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴)) |
| 96 | 95 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ∪ {〈𝑧, 𝑥〉}) → ((𝑓 ↾ 𝐴) = 𝐹 ↔ ((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹)) |
| 97 | | f1eq1 6096 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ∪ {〈𝑧, 𝑥〉}) → (𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵 ↔ (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵)) |
| 98 | 96, 97 | anbi12d 747 |
. . . . . 6
⊢ (𝑓 = (𝐹 ∪ {〈𝑧, 𝑥〉}) → (((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵) ↔ (((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵))) |
| 99 | 98 | elabg 3351 |
. . . . 5
⊢ ((𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ V → ((𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ↔ (((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵))) |
| 100 | 94, 99 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ((𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ↔ (((𝐹 ∪ {〈𝑧, 𝑥〉}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1→𝐵))) |
| 101 | 71, 88, 100 | mpbir2and 957 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)}) |
| 102 | 101 | ex 450 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐵 ∖ ran 𝐹) → (𝐹 ∪ {〈𝑧, 𝑥〉}) ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)})) |
| 103 | 21 | anbi1i 731 |
. . 3
⊢ ((𝑔 ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) ↔ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) |
| 104 | | simprlr 803 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) |
| 105 | | f1fn 6102 |
. . . . . . 7
⊢ (𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵 → 𝑔 Fn (𝐴 ∪ {𝑧})) |
| 106 | 104, 105 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑔 Fn (𝐴 ∪ {𝑧})) |
| 107 | 81 | adantrl 752 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1-onto→(ran
𝐹 ∪ {𝑥})) |
| 108 | | f1ofn 6138 |
. . . . . . 7
⊢ ((𝐹 ∪ {〈𝑧, 𝑥〉}):(𝐴 ∪ {𝑧})–1-1-onto→(ran
𝐹 ∪ {𝑥}) → (𝐹 ∪ {〈𝑧, 𝑥〉}) Fn (𝐴 ∪ {𝑧})) |
| 109 | 107, 108 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝐹 ∪ {〈𝑧, 𝑥〉}) Fn (𝐴 ∪ {𝑧})) |
| 110 | | eqfnfv 6311 |
. . . . . 6
⊢ ((𝑔 Fn (𝐴 ∪ {𝑧}) ∧ (𝐹 ∪ {〈𝑧, 𝑥〉}) Fn (𝐴 ∪ {𝑧})) → (𝑔 = (𝐹 ∪ {〈𝑧, 𝑥〉}) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦))) |
| 111 | 106, 109,
110 | syl2anc 693 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔 = (𝐹 ∪ {〈𝑧, 𝑥〉}) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦))) |
| 112 | | fvres 6207 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝐴 → ((𝑔 ↾ 𝐴)‘𝑦) = (𝑔‘𝑦)) |
| 113 | 112 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (𝑔‘𝑦) = ((𝑔 ↾ 𝐴)‘𝑦)) |
| 114 | | simprll 802 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔 ↾ 𝐴) = 𝐹) |
| 115 | 114 | fveq1d 6193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝑔 ↾ 𝐴)‘𝑦) = (𝐹‘𝑦)) |
| 116 | 113, 115 | sylan9eqr 2678 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) = (𝐹‘𝑦)) |
| 117 | 48 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → 𝐹:𝐴–1-1→𝐵) |
| 118 | | f1fn 6102 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| 119 | 117, 118 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → 𝐹 Fn 𝐴) |
| 120 | 25, 52 | fnsn 5946 |
. . . . . . . . . . 11
⊢
{〈𝑧, 𝑥〉} Fn {𝑧} |
| 121 | 120 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → {〈𝑧, 𝑥〉} Fn {𝑧}) |
| 122 | 65 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → (𝐴 ∩ {𝑧}) = ∅) |
| 123 | | simpr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 124 | | fvun1 6269 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ {〈𝑧, 𝑥〉} Fn {𝑧} ∧ ((𝐴 ∩ {𝑧}) = ∅ ∧ 𝑦 ∈ 𝐴)) → ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) = (𝐹‘𝑦)) |
| 125 | 119, 121,
122, 123, 124 | syl112anc 1330 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) = (𝐹‘𝑦)) |
| 126 | 116, 125 | eqtr4d 2659 |
. . . . . . . 8
⊢ (((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦)) |
| 127 | 126 | ralrimiva 2966 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦)) |
| 128 | 127 | biantrurd 529 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ∧ ∀𝑦 ∈ {𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦)))) |
| 129 | | ralunb 3794 |
. . . . . 6
⊢
(∀𝑦 ∈
(𝐴 ∪ {𝑧})(𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ∧ ∀𝑦 ∈ {𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦))) |
| 130 | 128, 129 | syl6bbr 278 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦))) |
| 131 | 25 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑧 ∈ V) |
| 132 | 52 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑥 ∈ V) |
| 133 | | fdm 6051 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 134 | 50, 133 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 135 | 134 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴)) |
| 136 | 30, 135 | mtbird 315 |
. . . . . . . . 9
⊢ (𝜑 → ¬ 𝑧 ∈ dom 𝐹) |
| 137 | 136 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ¬ 𝑧 ∈ dom 𝐹) |
| 138 | | fsnunfv 6453 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧ 𝑥 ∈ V ∧ ¬ 𝑧 ∈ dom 𝐹) → ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧) = 𝑥) |
| 139 | 131, 132,
137, 138 | syl3anc 1326 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧) = 𝑥) |
| 140 | 139 | eqeq2d 2632 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝑔‘𝑧) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧) ↔ (𝑔‘𝑧) = 𝑥)) |
| 141 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑔‘𝑦) = (𝑔‘𝑧)) |
| 142 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧)) |
| 143 | 141, 142 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ (𝑔‘𝑧) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧))) |
| 144 | 25, 143 | ralsn 4222 |
. . . . . 6
⊢
(∀𝑦 ∈
{𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ (𝑔‘𝑧) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑧)) |
| 145 | | eqcom 2629 |
. . . . . 6
⊢ (𝑥 = (𝑔‘𝑧) ↔ (𝑔‘𝑧) = 𝑥) |
| 146 | 140, 144,
145 | 3bitr4g 303 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔‘𝑦) = ((𝐹 ∪ {〈𝑧, 𝑥〉})‘𝑦) ↔ 𝑥 = (𝑔‘𝑧))) |
| 147 | 111, 130,
146 | 3bitr2d 296 |
. . . 4
⊢ ((𝜑 ∧ (((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔 = (𝐹 ∪ {〈𝑧, 𝑥〉}) ↔ 𝑥 = (𝑔‘𝑧))) |
| 148 | 147 | ex 450 |
. . 3
⊢ (𝜑 → ((((𝑔 ↾ 𝐴) = 𝐹 ∧ 𝑔:(𝐴 ∪ {𝑧})–1-1→𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝑔 = (𝐹 ∪ {〈𝑧, 𝑥〉}) ↔ 𝑥 = (𝑔‘𝑧)))) |
| 149 | 103, 148 | syl5bi 232 |
. 2
⊢ (𝜑 → ((𝑔 ∈ {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝑔 = (𝐹 ∪ {〈𝑧, 𝑥〉}) ↔ 𝑥 = (𝑔‘𝑧)))) |
| 150 | 13, 15, 47, 102, 149 | en3d 7992 |
1
⊢ (𝜑 → {𝑓 ∣ ((𝑓 ↾ 𝐴) = 𝐹 ∧ 𝑓:(𝐴 ∪ {𝑧})–1-1→𝐵)} ≈ (𝐵 ∖ ran 𝐹)) |