MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashf1lem1 Structured version   Visualization version   GIF version

Theorem hashf1lem1 13239
Description: Lemma for hashf1 13241. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
hashf1lem2.1 (𝜑𝐴 ∈ Fin)
hashf1lem2.2 (𝜑𝐵 ∈ Fin)
hashf1lem2.3 (𝜑 → ¬ 𝑧𝐴)
hashf1lem2.4 (𝜑 → ((#‘𝐴) + 1) ≤ (#‘𝐵))
hashf1lem1.5 (𝜑𝐹:𝐴1-1𝐵)
Assertion
Ref Expression
hashf1lem1 (𝜑 → {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ≈ (𝐵 ∖ ran 𝐹))
Distinct variable groups:   𝑧,𝑓   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓   𝑓,𝐹
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝐹(𝑧)

Proof of Theorem hashf1lem1
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6101 . . . . . 6 (𝑓:(𝐴 ∪ {𝑧})–1-1𝐵𝑓:(𝐴 ∪ {𝑧})⟶𝐵)
21adantl 482 . . . . 5 (((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵) → 𝑓:(𝐴 ∪ {𝑧})⟶𝐵)
3 hashf1lem2.2 . . . . . 6 (𝜑𝐵 ∈ Fin)
4 hashf1lem2.1 . . . . . . 7 (𝜑𝐴 ∈ Fin)
5 snfi 8038 . . . . . . 7 {𝑧} ∈ Fin
6 unfi 8227 . . . . . . 7 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin)
74, 5, 6sylancl 694 . . . . . 6 (𝜑 → (𝐴 ∪ {𝑧}) ∈ Fin)
83, 7elmapd 7871 . . . . 5 (𝜑 → (𝑓 ∈ (𝐵𝑚 (𝐴 ∪ {𝑧})) ↔ 𝑓:(𝐴 ∪ {𝑧})⟶𝐵))
92, 8syl5ibr 236 . . . 4 (𝜑 → (((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵) → 𝑓 ∈ (𝐵𝑚 (𝐴 ∪ {𝑧}))))
109abssdv 3676 . . 3 (𝜑 → {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ⊆ (𝐵𝑚 (𝐴 ∪ {𝑧})))
11 ovex 6678 . . 3 (𝐵𝑚 (𝐴 ∪ {𝑧})) ∈ V
12 ssexg 4804 . . 3 (({𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ⊆ (𝐵𝑚 (𝐴 ∪ {𝑧})) ∧ (𝐵𝑚 (𝐴 ∪ {𝑧})) ∈ V) → {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ∈ V)
1310, 11, 12sylancl 694 . 2 (𝜑 → {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ∈ V)
14 difexg 4808 . . 3 (𝐵 ∈ Fin → (𝐵 ∖ ran 𝐹) ∈ V)
153, 14syl 17 . 2 (𝜑 → (𝐵 ∖ ran 𝐹) ∈ V)
16 vex 3203 . . . 4 𝑔 ∈ V
17 reseq1 5390 . . . . . 6 (𝑓 = 𝑔 → (𝑓𝐴) = (𝑔𝐴))
1817eqeq1d 2624 . . . . 5 (𝑓 = 𝑔 → ((𝑓𝐴) = 𝐹 ↔ (𝑔𝐴) = 𝐹))
19 f1eq1 6096 . . . . 5 (𝑓 = 𝑔 → (𝑓:(𝐴 ∪ {𝑧})–1-1𝐵𝑔:(𝐴 ∪ {𝑧})–1-1𝐵))
2018, 19anbi12d 747 . . . 4 (𝑓 = 𝑔 → (((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵) ↔ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)))
2116, 20elab 3350 . . 3 (𝑔 ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ↔ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵))
22 f1f 6101 . . . . . . 7 (𝑔:(𝐴 ∪ {𝑧})–1-1𝐵𝑔:(𝐴 ∪ {𝑧})⟶𝐵)
2322ad2antll 765 . . . . . 6 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → 𝑔:(𝐴 ∪ {𝑧})⟶𝐵)
24 ssun2 3777 . . . . . . 7 {𝑧} ⊆ (𝐴 ∪ {𝑧})
25 vex 3203 . . . . . . . 8 𝑧 ∈ V
2625snss 4316 . . . . . . 7 (𝑧 ∈ (𝐴 ∪ {𝑧}) ↔ {𝑧} ⊆ (𝐴 ∪ {𝑧}))
2724, 26mpbir 221 . . . . . 6 𝑧 ∈ (𝐴 ∪ {𝑧})
28 ffvelrn 6357 . . . . . 6 ((𝑔:(𝐴 ∪ {𝑧})⟶𝐵𝑧 ∈ (𝐴 ∪ {𝑧})) → (𝑔𝑧) ∈ 𝐵)
2923, 27, 28sylancl 694 . . . . 5 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → (𝑔𝑧) ∈ 𝐵)
30 hashf1lem2.3 . . . . . . 7 (𝜑 → ¬ 𝑧𝐴)
3130adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ¬ 𝑧𝐴)
32 df-ima 5127 . . . . . . . . 9 (𝑔𝐴) = ran (𝑔𝐴)
33 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → (𝑔𝐴) = 𝐹)
3433rneqd 5353 . . . . . . . . 9 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ran (𝑔𝐴) = ran 𝐹)
3532, 34syl5eq 2668 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → (𝑔𝐴) = ran 𝐹)
3635eleq2d 2687 . . . . . . 7 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ((𝑔𝑧) ∈ (𝑔𝐴) ↔ (𝑔𝑧) ∈ ran 𝐹))
37 simprr 796 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → 𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)
3827a1i 11 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → 𝑧 ∈ (𝐴 ∪ {𝑧}))
39 ssun1 3776 . . . . . . . . 9 𝐴 ⊆ (𝐴 ∪ {𝑧})
4039a1i 11 . . . . . . . 8 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → 𝐴 ⊆ (𝐴 ∪ {𝑧}))
41 f1elima 6520 . . . . . . . 8 ((𝑔:(𝐴 ∪ {𝑧})–1-1𝐵𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ 𝐴 ⊆ (𝐴 ∪ {𝑧})) → ((𝑔𝑧) ∈ (𝑔𝐴) ↔ 𝑧𝐴))
4237, 38, 40, 41syl3anc 1326 . . . . . . 7 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ((𝑔𝑧) ∈ (𝑔𝐴) ↔ 𝑧𝐴))
4336, 42bitr3d 270 . . . . . 6 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ((𝑔𝑧) ∈ ran 𝐹𝑧𝐴))
4431, 43mtbird 315 . . . . 5 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → ¬ (𝑔𝑧) ∈ ran 𝐹)
4529, 44eldifd 3585 . . . 4 ((𝜑 ∧ ((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)) → (𝑔𝑧) ∈ (𝐵 ∖ ran 𝐹))
4645ex 450 . . 3 (𝜑 → (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) → (𝑔𝑧) ∈ (𝐵 ∖ ran 𝐹)))
4721, 46syl5bi 232 . 2 (𝜑 → (𝑔 ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} → (𝑔𝑧) ∈ (𝐵 ∖ ran 𝐹)))
48 hashf1lem1.5 . . . . . . 7 (𝜑𝐹:𝐴1-1𝐵)
49 f1f 6101 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
5048, 49syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐵)
5150adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹:𝐴𝐵)
52 vex 3203 . . . . . . . 8 𝑥 ∈ V
5325, 52f1osn 6176 . . . . . . 7 {⟨𝑧, 𝑥⟩}:{𝑧}–1-1-onto→{𝑥}
54 f1of 6137 . . . . . . 7 ({⟨𝑧, 𝑥⟩}:{𝑧}–1-1-onto→{𝑥} → {⟨𝑧, 𝑥⟩}:{𝑧}⟶{𝑥})
5553, 54ax-mp 5 . . . . . 6 {⟨𝑧, 𝑥⟩}:{𝑧}⟶{𝑥}
56 eldifi 3732 . . . . . . . 8 (𝑥 ∈ (𝐵 ∖ ran 𝐹) → 𝑥𝐵)
5756adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝑥𝐵)
5857snssd 4340 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {𝑥} ⊆ 𝐵)
59 fss 6056 . . . . . 6 (({⟨𝑧, 𝑥⟩}:{𝑧}⟶{𝑥} ∧ {𝑥} ⊆ 𝐵) → {⟨𝑧, 𝑥⟩}:{𝑧}⟶𝐵)
6055, 58, 59sylancr 695 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {⟨𝑧, 𝑥⟩}:{𝑧}⟶𝐵)
61 res0 5400 . . . . . . 7 (𝐹 ↾ ∅) = ∅
62 res0 5400 . . . . . . 7 ({⟨𝑧, 𝑥⟩} ↾ ∅) = ∅
6361, 62eqtr4i 2647 . . . . . 6 (𝐹 ↾ ∅) = ({⟨𝑧, 𝑥⟩} ↾ ∅)
64 disjsn 4246 . . . . . . . . 9 ((𝐴 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝐴)
6530, 64sylibr 224 . . . . . . . 8 (𝜑 → (𝐴 ∩ {𝑧}) = ∅)
6665adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐴 ∩ {𝑧}) = ∅)
6766reseq2d 5396 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ↾ (𝐴 ∩ {𝑧})) = (𝐹 ↾ ∅))
6866reseq2d 5396 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ({⟨𝑧, 𝑥⟩} ↾ (𝐴 ∩ {𝑧})) = ({⟨𝑧, 𝑥⟩} ↾ ∅))
6963, 67, 683eqtr4a 2682 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ↾ (𝐴 ∩ {𝑧})) = ({⟨𝑧, 𝑥⟩} ↾ (𝐴 ∩ {𝑧})))
70 fresaunres1 6077 . . . . 5 ((𝐹:𝐴𝐵 ∧ {⟨𝑧, 𝑥⟩}:{𝑧}⟶𝐵 ∧ (𝐹 ↾ (𝐴 ∩ {𝑧})) = ({⟨𝑧, 𝑥⟩} ↾ (𝐴 ∩ {𝑧}))) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹)
7151, 60, 69, 70syl3anc 1326 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹)
72 f1f1orn 6148 . . . . . . . . 9 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
7348, 72syl 17 . . . . . . . 8 (𝜑𝐹:𝐴1-1-onto→ran 𝐹)
7473adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹:𝐴1-1-onto→ran 𝐹)
7553a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → {⟨𝑧, 𝑥⟩}:{𝑧}–1-1-onto→{𝑥})
76 eldifn 3733 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∖ ran 𝐹) → ¬ 𝑥 ∈ ran 𝐹)
7776adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ¬ 𝑥 ∈ ran 𝐹)
78 disjsn 4246 . . . . . . . 8 ((ran 𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹)
7977, 78sylibr 224 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (ran 𝐹 ∩ {𝑥}) = ∅)
80 f1oun 6156 . . . . . . 7 (((𝐹:𝐴1-1-onto→ran 𝐹 ∧ {⟨𝑧, 𝑥⟩}:{𝑧}–1-1-onto→{𝑥}) ∧ ((𝐴 ∩ {𝑧}) = ∅ ∧ (ran 𝐹 ∩ {𝑥}) = ∅)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1-onto→(ran 𝐹 ∪ {𝑥}))
8174, 75, 66, 79, 80syl22anc 1327 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1-onto→(ran 𝐹 ∪ {𝑥}))
82 f1of1 6136 . . . . . 6 ((𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1-onto→(ran 𝐹 ∪ {𝑥}) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥}))
8381, 82syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥}))
84 frn 6053 . . . . . . 7 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
8551, 84syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ran 𝐹𝐵)
8685, 58unssd 3789 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (ran 𝐹 ∪ {𝑥}) ⊆ 𝐵)
87 f1ss 6106 . . . . 5 (((𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1→(ran 𝐹 ∪ {𝑥}) ∧ (ran 𝐹 ∪ {𝑥}) ⊆ 𝐵) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵)
8883, 86, 87syl2anc 693 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵)
89 fex 6490 . . . . . . . 8 ((𝐹:𝐴𝐵𝐴 ∈ Fin) → 𝐹 ∈ V)
9050, 4, 89syl2anc 693 . . . . . . 7 (𝜑𝐹 ∈ V)
9190adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → 𝐹 ∈ V)
92 snex 4908 . . . . . 6 {⟨𝑧, 𝑥⟩} ∈ V
93 unexg 6959 . . . . . 6 ((𝐹 ∈ V ∧ {⟨𝑧, 𝑥⟩} ∈ V) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ V)
9491, 92, 93sylancl 694 . . . . 5 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ V)
95 reseq1 5390 . . . . . . . 8 (𝑓 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) → (𝑓𝐴) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴))
9695eqeq1d 2624 . . . . . . 7 (𝑓 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) → ((𝑓𝐴) = 𝐹 ↔ ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹))
97 f1eq1 6096 . . . . . . 7 (𝑓 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) → (𝑓:(𝐴 ∪ {𝑧})–1-1𝐵 ↔ (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵))
9896, 97anbi12d 747 . . . . . 6 (𝑓 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) → (((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵) ↔ (((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵)))
9998elabg 3351 . . . . 5 ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ V → ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ↔ (((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵)))
10094, 99syl 17 . . . 4 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ↔ (((𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↾ 𝐴) = 𝐹 ∧ (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1𝐵)))
10171, 88, 100mpbir2and 957 . . 3 ((𝜑𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)})
102101ex 450 . 2 (𝜑 → (𝑥 ∈ (𝐵 ∖ ran 𝐹) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)}))
10321anbi1i 731 . . 3 ((𝑔 ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) ↔ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)))
104 simprlr 803 . . . . . . 7 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑔:(𝐴 ∪ {𝑧})–1-1𝐵)
105 f1fn 6102 . . . . . . 7 (𝑔:(𝐴 ∪ {𝑧})–1-1𝐵𝑔 Fn (𝐴 ∪ {𝑧}))
106104, 105syl 17 . . . . . 6 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑔 Fn (𝐴 ∪ {𝑧}))
10781adantrl 752 . . . . . . 7 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1-onto→(ran 𝐹 ∪ {𝑥}))
108 f1ofn 6138 . . . . . . 7 ((𝐹 ∪ {⟨𝑧, 𝑥⟩}):(𝐴 ∪ {𝑧})–1-1-onto→(ran 𝐹 ∪ {𝑥}) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) Fn (𝐴 ∪ {𝑧}))
109107, 108syl 17 . . . . . 6 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝐹 ∪ {⟨𝑧, 𝑥⟩}) Fn (𝐴 ∪ {𝑧}))
110 eqfnfv 6311 . . . . . 6 ((𝑔 Fn (𝐴 ∪ {𝑧}) ∧ (𝐹 ∪ {⟨𝑧, 𝑥⟩}) Fn (𝐴 ∪ {𝑧})) → (𝑔 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦)))
111106, 109, 110syl2anc 693 . . . . 5 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦)))
112 fvres 6207 . . . . . . . . . . 11 (𝑦𝐴 → ((𝑔𝐴)‘𝑦) = (𝑔𝑦))
113112eqcomd 2628 . . . . . . . . . 10 (𝑦𝐴 → (𝑔𝑦) = ((𝑔𝐴)‘𝑦))
114 simprll 802 . . . . . . . . . . 11 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔𝐴) = 𝐹)
115114fveq1d 6193 . . . . . . . . . 10 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝑔𝐴)‘𝑦) = (𝐹𝑦))
116113, 115sylan9eqr 2678 . . . . . . . . 9 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → (𝑔𝑦) = (𝐹𝑦))
11748ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → 𝐹:𝐴1-1𝐵)
118 f1fn 6102 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
119117, 118syl 17 . . . . . . . . . 10 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → 𝐹 Fn 𝐴)
12025, 52fnsn 5946 . . . . . . . . . . 11 {⟨𝑧, 𝑥⟩} Fn {𝑧}
121120a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → {⟨𝑧, 𝑥⟩} Fn {𝑧})
12265ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → (𝐴 ∩ {𝑧}) = ∅)
123 simpr 477 . . . . . . . . . 10 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → 𝑦𝐴)
124 fvun1 6269 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ {⟨𝑧, 𝑥⟩} Fn {𝑧} ∧ ((𝐴 ∩ {𝑧}) = ∅ ∧ 𝑦𝐴)) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) = (𝐹𝑦))
125119, 121, 122, 123, 124syl112anc 1330 . . . . . . . . 9 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) = (𝐹𝑦))
126116, 125eqtr4d 2659 . . . . . . . 8 (((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) ∧ 𝑦𝐴) → (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦))
127126ralrimiva 2966 . . . . . . 7 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ∀𝑦𝐴 (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦))
128127biantrurd 529 . . . . . 6 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ (∀𝑦𝐴 (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ∧ ∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦))))
129 ralunb 3794 . . . . . 6 (∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ (∀𝑦𝐴 (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ∧ ∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦)))
130128, 129syl6bbr 278 . . . . 5 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ ∀𝑦 ∈ (𝐴 ∪ {𝑧})(𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦)))
13125a1i 11 . . . . . . . 8 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑧 ∈ V)
13252a1i 11 . . . . . . . 8 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → 𝑥 ∈ V)
133 fdm 6051 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
13450, 133syl 17 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝐴)
135134eleq2d 2687 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
13630, 135mtbird 315 . . . . . . . . 9 (𝜑 → ¬ 𝑧 ∈ dom 𝐹)
137136adantr 481 . . . . . . . 8 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ¬ 𝑧 ∈ dom 𝐹)
138 fsnunfv 6453 . . . . . . . 8 ((𝑧 ∈ V ∧ 𝑥 ∈ V ∧ ¬ 𝑧 ∈ dom 𝐹) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧) = 𝑥)
139131, 132, 137, 138syl3anc 1326 . . . . . . 7 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧) = 𝑥)
140139eqeq2d 2632 . . . . . 6 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → ((𝑔𝑧) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧) ↔ (𝑔𝑧) = 𝑥))
141 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑧 → (𝑔𝑦) = (𝑔𝑧))
142 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧))
143141, 142eqeq12d 2637 . . . . . . 7 (𝑦 = 𝑧 → ((𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ (𝑔𝑧) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧)))
14425, 143ralsn 4222 . . . . . 6 (∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ (𝑔𝑧) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑧))
145 eqcom 2629 . . . . . 6 (𝑥 = (𝑔𝑧) ↔ (𝑔𝑧) = 𝑥)
146140, 144, 1453bitr4g 303 . . . . 5 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (∀𝑦 ∈ {𝑧} (𝑔𝑦) = ((𝐹 ∪ {⟨𝑧, 𝑥⟩})‘𝑦) ↔ 𝑥 = (𝑔𝑧)))
147111, 130, 1463bitr2d 296 . . . 4 ((𝜑 ∧ (((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹))) → (𝑔 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↔ 𝑥 = (𝑔𝑧)))
148147ex 450 . . 3 (𝜑 → ((((𝑔𝐴) = 𝐹𝑔:(𝐴 ∪ {𝑧})–1-1𝐵) ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝑔 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↔ 𝑥 = (𝑔𝑧))))
149103, 148syl5bi 232 . 2 (𝜑 → ((𝑔 ∈ {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ∧ 𝑥 ∈ (𝐵 ∖ ran 𝐹)) → (𝑔 = (𝐹 ∪ {⟨𝑧, 𝑥⟩}) ↔ 𝑥 = (𝑔𝑧))))
15013, 15, 47, 102, 149en3d 7992 1 (𝜑 → {𝑓 ∣ ((𝑓𝐴) = 𝐹𝑓:(𝐴 ∪ {𝑧})–1-1𝐵)} ≈ (𝐵 ∖ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183   class class class wbr 4653  dom cdm 5114  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  cen 7952  Fincfn 7955  1c1 9937   + caddc 9939  cle 10075  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959
This theorem is referenced by:  hashf1lem2  13240
  Copyright terms: Public domain W3C validator