Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvline Structured version   Visualization version   GIF version

Theorem fvline 32251
Description: Calculate the value of the Line function. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvline ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem fvline
Dummy variables 𝑎 𝑏 𝑙 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear
2 fveq2 6191 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32eleq2d 2687 . . . . . . . 8 (𝑛 = 𝑁 → (𝐴 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑁)))
42eleq2d 2687 . . . . . . . 8 (𝑛 = 𝑁 → (𝐵 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑁)))
53, 43anbi12d 1400 . . . . . . 7 (𝑛 = 𝑁 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)))
65anbi1d 741 . . . . . 6 (𝑛 = 𝑁 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
76rspcev 3309 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
81, 7mpanr2 720 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
9 simpr1 1067 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpr2 1068 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → 𝐵 ∈ (𝔼‘𝑁))
11 colinearex 32167 . . . . . . . 8 Colinear ∈ V
1211cnvex 7113 . . . . . . 7 Colinear ∈ V
13 ecexg 7746 . . . . . . 7 ( Colinear ∈ V → [⟨𝐴, 𝐵⟩] Colinear ∈ V)
1412, 13ax-mp 5 . . . . . 6 [⟨𝐴, 𝐵⟩] Colinear ∈ V
15 eleq1 2689 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
16 neeq1 2856 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑏𝐴𝑏))
1715, 163anbi13d 1401 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏)))
18 opeq1 4402 . . . . . . . . . . 11 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
1918eceq1d 7783 . . . . . . . . . 10 (𝑎 = 𝐴 → [⟨𝑎, 𝑏⟩] Colinear = [⟨𝐴, 𝑏⟩] Colinear )
2019eqeq2d 2632 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑙 = [⟨𝑎, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ))
2117, 20anbi12d 747 . . . . . . . 8 (𝑎 = 𝐴 → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
2221rexbidv 3052 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear )))
23 eleq1 2689 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
24 neeq2 2857 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴𝑏𝐴𝐵))
2523, 243anbi23d 1402 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵)))
26 opeq2 4403 . . . . . . . . . . 11 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
2726eceq1d 7783 . . . . . . . . . 10 (𝑏 = 𝐵 → [⟨𝐴, 𝑏⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )
2827eqeq2d 2632 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑙 = [⟨𝐴, 𝑏⟩] Colinear ↔ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ))
2925, 28anbi12d 747 . . . . . . . 8 (𝑏 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
3029rexbidv 3052 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝐴𝑏) ∧ 𝑙 = [⟨𝐴, 𝑏⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear )))
31 eqeq1 2626 . . . . . . . . 9 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (𝑙 = [⟨𝐴, 𝐵⟩] Colinear ↔ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear ))
3231anbi2d 740 . . . . . . . 8 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3332rexbidv 3052 . . . . . . 7 (𝑙 = [⟨𝐴, 𝐵⟩] Colinear → (∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ 𝑙 = [⟨𝐴, 𝐵⟩] Colinear ) ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3422, 30, 33eloprabg 6748 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ [⟨𝐴, 𝐵⟩] Colinear ∈ V) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
3514, 34mp3an3 1413 . . . . 5 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
369, 10, 35syl2anc 693 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} ↔ ∃𝑛 ∈ ℕ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛) ∧ 𝐴𝐵) ∧ [⟨𝐴, 𝐵⟩] Colinear = [⟨𝐴, 𝐵⟩] Colinear )))
378, 36mpbird 247 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
38 df-ov 6653 . . . 4 (𝐴Line𝐵) = (Line‘⟨𝐴, 𝐵⟩)
39 df-br 4654 . . . . . 6 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line)
40 df-line2 32244 . . . . . . 7 Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
4140eleq2i 2693 . . . . . 6 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ Line ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
4239, 41bitri 264 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear ↔ ⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )})
43 funline 32249 . . . . . 6 Fun Line
44 funbrfv 6234 . . . . . 6 (Fun Line → (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear ))
4543, 44ax-mp 5 . . . . 5 (⟨𝐴, 𝐵⟩Line[⟨𝐴, 𝐵⟩] Colinear → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4642, 45sylbir 225 . . . 4 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (Line‘⟨𝐴, 𝐵⟩) = [⟨𝐴, 𝐵⟩] Colinear )
4738, 46syl5eq 2668 . . 3 (⟨⟨𝐴, 𝐵⟩, [⟨𝐴, 𝐵⟩] Colinear ⟩ ∈ {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )} → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
4837, 47syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = [⟨𝐴, 𝐵⟩] Colinear )
49 opex 4932 . . . 4 𝐴, 𝐵⟩ ∈ V
50 dfec2 7745 . . . 4 (⟨𝐴, 𝐵⟩ ∈ V → [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥})
5149, 50ax-mp 5 . . 3 [⟨𝐴, 𝐵⟩] Colinear = {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥}
52 vex 3203 . . . . 5 𝑥 ∈ V
5349, 52brcnv 5305 . . . 4 (⟨𝐴, 𝐵 Colinear 𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩)
5453abbii 2739 . . 3 {𝑥 ∣ ⟨𝐴, 𝐵 Colinear 𝑥} = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5551, 54eqtri 2644 . 2 [⟨𝐴, 𝐵⟩] Colinear = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩}
5648, 55syl6eq 2672 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵)) → (𝐴Line𝐵) = {𝑥𝑥 Colinear ⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wrex 2913  Vcvv 3200  cop 4183   class class class wbr 4653  ccnv 5113  Fun wfun 5882  cfv 5888  (class class class)co 6650  {coprab 6651  [cec 7740  cn 11020  𝔼cee 25768   Colinear ccolin 32144  Linecline2 32241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-ec 7744  df-nn 11021  df-colinear 32146  df-line2 32244
This theorem is referenced by:  liness  32252  fvline2  32253  ellines  32259
  Copyright terms: Public domain W3C validator