Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gicabl Structured version   Visualization version   GIF version

Theorem gicabl 37669
Description: Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.)
Assertion
Ref Expression
gicabl (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))

Proof of Theorem gicabl
Dummy variables 𝑤 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 17711 . 2 (𝐺𝑔 𝐻 ↔ (𝐺 GrpIso 𝐻) ≠ ∅)
2 n0 3931 . . 3 ((𝐺 GrpIso 𝐻) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻))
3 gimghm 17706 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
4 ghmgrp1 17662 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
53, 4syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Grp)
6 ghmgrp2 17663 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
73, 6syl 17 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Grp)
85, 72thd 255 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Grp ↔ 𝐻 ∈ Grp))
9 grpmnd 17429 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐺 ∈ Mnd)
11 grpmnd 17429 . . . . . . . . . 10 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
127, 11syl 17 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝐻 ∈ Mnd)
1310, 122thd 255 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Mnd ↔ 𝐻 ∈ Mnd))
14 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘𝐻) = (Base‘𝐻)
1614, 15gimf1o 17705 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻))
17 f1of1 6136 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1816, 17syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
1918adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘𝐺)–1-1→(Base‘𝐻))
205adantr 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
21 simprl 794 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
22 simprr 796 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
23 eqid 2622 . . . . . . . . . . . . . . 15 (+g𝐺) = (+g𝐺)
2414, 23grpcl 17430 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2520, 21, 22, 24syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
2614, 23grpcl 17430 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
2720, 22, 21, 26syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))
28 f1fveq 6519 . . . . . . . . . . . . 13 ((𝑥:(Base‘𝐺)–1-1→(Base‘𝐻) ∧ ((𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺) ∧ (𝑧(+g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
2919, 25, 27, 28syl12anc 1324 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ (𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
303adantr 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (𝐺 GrpHom 𝐻))
31 eqid 2622 . . . . . . . . . . . . . . 15 (+g𝐻) = (+g𝐻)
3214, 23, 31ghmlin 17665 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺)) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3330, 21, 22, 32syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑦(+g𝐺)𝑧)) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
3414, 23, 31ghmlin 17665 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑧 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3530, 22, 21, 34syl3anc 1326 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥‘(𝑧(+g𝐺)𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
3633, 35eqeq12d 2637 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥‘(𝑦(+g𝐺)𝑧)) = (𝑥‘(𝑧(+g𝐺)𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
3729, 36bitr3d 270 . . . . . . . . . . 11 ((𝑥 ∈ (𝐺 GrpIso 𝐻) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
38372ralbidva 2988 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
39 f1ofo 6144 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥:(Base‘𝐺)–onto→(Base‘𝐻))
40 foima 6120 . . . . . . . . . . . . . . 15 (𝑥:(Base‘𝐺)–onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4139, 40syl 17 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4216, 41syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝑥 “ (Base‘𝐺)) = (Base‘𝐻))
4342raleqdv 3144 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
44 f1ofn 6138 . . . . . . . . . . . . . 14 (𝑥:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑥 Fn (Base‘𝐺))
4516, 44syl 17 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐺 GrpIso 𝐻) → 𝑥 Fn (Base‘𝐺))
46 ssid 3624 . . . . . . . . . . . . 13 (Base‘𝐺) ⊆ (Base‘𝐺)
47 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → ((𝑥𝑦)(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)(𝑥𝑧)))
48 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥𝑧) → (𝑣(+g𝐻)(𝑥𝑦)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦)))
4947, 48eqeq12d 2637 . . . . . . . . . . . . . 14 (𝑣 = (𝑥𝑧) → (((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5049ralima 6498 . . . . . . . . . . . . 13 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5145, 46, 50sylancl 694 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (𝑥 “ (Base‘𝐺))((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5243, 51bitr3d 270 . . . . . . . . . . 11 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5352ralbidv 2986 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)((𝑥𝑦)(+g𝐻)(𝑥𝑧)) = ((𝑥𝑧)(+g𝐻)(𝑥𝑦))))
5438, 53bitr4d 271 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5542raleqdv 3144 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
56 oveq1 6657 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑤(+g𝐻)𝑣) = ((𝑥𝑦)(+g𝐻)𝑣))
57 oveq2 6658 . . . . . . . . . . . . . 14 (𝑤 = (𝑥𝑦) → (𝑣(+g𝐻)𝑤) = (𝑣(+g𝐻)(𝑥𝑦)))
5856, 57eqeq12d 2637 . . . . . . . . . . . . 13 (𝑤 = (𝑥𝑦) → ((𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
5958ralbidv 2986 . . . . . . . . . . . 12 (𝑤 = (𝑥𝑦) → (∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6059ralima 6498 . . . . . . . . . . 11 ((𝑥 Fn (Base‘𝐺) ∧ (Base‘𝐺) ⊆ (Base‘𝐺)) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6145, 46, 60sylancl 694 . . . . . . . . . 10 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (𝑥 “ (Base‘𝐺))∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6255, 61bitr3d 270 . . . . . . . . 9 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤) ↔ ∀𝑦 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐻)((𝑥𝑦)(+g𝐻)𝑣) = (𝑣(+g𝐻)(𝑥𝑦))))
6354, 62bitr4d 271 . . . . . . . 8 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦) ↔ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6413, 63anbi12d 747 . . . . . . 7 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)) ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤))))
6514, 23iscmn 18200 . . . . . . 7 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐺)(𝑦(+g𝐺)𝑧) = (𝑧(+g𝐺)𝑦)))
6615, 31iscmn 18200 . . . . . . 7 (𝐻 ∈ CMnd ↔ (𝐻 ∈ Mnd ∧ ∀𝑤 ∈ (Base‘𝐻)∀𝑣 ∈ (Base‘𝐻)(𝑤(+g𝐻)𝑣) = (𝑣(+g𝐻)𝑤)))
6764, 65, 663bitr4g 303 . . . . . 6 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))
688, 67anbi12d 747 . . . . 5 (𝑥 ∈ (𝐺 GrpIso 𝐻) → ((𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd) ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)))
69 isabl 18197 . . . . 5 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
70 isabl 18197 . . . . 5 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
7168, 69, 703bitr4g 303 . . . 4 (𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
7271exlimiv 1858 . . 3 (∃𝑥 𝑥 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
732, 72sylbi 207 . 2 ((𝐺 GrpIso 𝐻) ≠ ∅ → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
741, 73sylbi 207 1 (𝐺𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915   class class class wbr 4653  cima 5117   Fn wfn 5883  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mndcmnd 17294  Grpcgrp 17422   GrpHom cghm 17657   GrpIso cgim 17699  𝑔 cgic 17700  CMndccmn 18193  Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-ghm 17658  df-gim 17701  df-gic 17702  df-cmn 18195  df-abl 18196
This theorem is referenced by:  isnumbasgrplem1  37671
  Copyright terms: Public domain W3C validator