Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmpwfi Structured version   Visualization version   GIF version

Theorem frlmpwfi 37668
Description: Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.)
Hypotheses
Ref Expression
frlmpwfi.r 𝑅 = (ℤ/nℤ‘2)
frlmpwfi.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmpwfi.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
frlmpwfi (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))

Proof of Theorem frlmpwfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frlmpwfi.r . . . . . 6 𝑅 = (ℤ/nℤ‘2)
2 fvex 6201 . . . . . 6 (ℤ/nℤ‘2) ∈ V
31, 2eqeltri 2697 . . . . 5 𝑅 ∈ V
4 frlmpwfi.y . . . . . 6 𝑌 = (𝑅 freeLMod 𝐼)
5 eqid 2622 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2622 . . . . . 6 (0g𝑅) = (0g𝑅)
7 eqid 2622 . . . . . 6 {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)}
84, 5, 6, 7frlmbas 20099 . . . . 5 ((𝑅 ∈ V ∧ 𝐼𝑉) → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
93, 8mpan 706 . . . 4 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = (Base‘𝑌))
10 frlmpwfi.b . . . 4 𝐵 = (Base‘𝑌)
119, 10syl6eqr 2674 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)} = 𝐵)
12 eqid 2622 . . . 4 {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅} = {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅}
13 enrefg 7987 . . . 4 (𝐼𝑉𝐼𝐼)
14 2nn 11185 . . . . . . . 8 2 ∈ ℕ
151, 5znhash 19907 . . . . . . . 8 (2 ∈ ℕ → (#‘(Base‘𝑅)) = 2)
1614, 15ax-mp 5 . . . . . . 7 (#‘(Base‘𝑅)) = 2
17 hash2 13193 . . . . . . 7 (#‘2𝑜) = 2
1816, 17eqtr4i 2647 . . . . . 6 (#‘(Base‘𝑅)) = (#‘2𝑜)
19 2nn0 11309 . . . . . . . . 9 2 ∈ ℕ0
2016, 19eqeltri 2697 . . . . . . . 8 (#‘(Base‘𝑅)) ∈ ℕ0
21 fvex 6201 . . . . . . . . 9 (Base‘𝑅) ∈ V
22 hashclb 13149 . . . . . . . . 9 ((Base‘𝑅) ∈ V → ((Base‘𝑅) ∈ Fin ↔ (#‘(Base‘𝑅)) ∈ ℕ0))
2321, 22ax-mp 5 . . . . . . . 8 ((Base‘𝑅) ∈ Fin ↔ (#‘(Base‘𝑅)) ∈ ℕ0)
2420, 23mpbir 221 . . . . . . 7 (Base‘𝑅) ∈ Fin
25 2onn 7720 . . . . . . . 8 2𝑜 ∈ ω
26 nnfi 8153 . . . . . . . 8 (2𝑜 ∈ ω → 2𝑜 ∈ Fin)
2725, 26ax-mp 5 . . . . . . 7 2𝑜 ∈ Fin
28 hashen 13135 . . . . . . 7 (((Base‘𝑅) ∈ Fin ∧ 2𝑜 ∈ Fin) → ((#‘(Base‘𝑅)) = (#‘2𝑜) ↔ (Base‘𝑅) ≈ 2𝑜))
2924, 27, 28mp2an 708 . . . . . 6 ((#‘(Base‘𝑅)) = (#‘2𝑜) ↔ (Base‘𝑅) ≈ 2𝑜)
3018, 29mpbi 220 . . . . 5 (Base‘𝑅) ≈ 2𝑜
3130a1i 11 . . . 4 (𝐼𝑉 → (Base‘𝑅) ≈ 2𝑜)
321zncrng 19893 . . . . . 6 (2 ∈ ℕ0𝑅 ∈ CRing)
33 crngring 18558 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3419, 32, 33mp2b 10 . . . . 5 𝑅 ∈ Ring
355, 6ring0cl 18569 . . . . 5 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3634, 35mp1i 13 . . . 4 (𝐼𝑉 → (0g𝑅) ∈ (Base‘𝑅))
37 2on0 7569 . . . . . 6 2𝑜 ≠ ∅
38 2on 7568 . . . . . . 7 2𝑜 ∈ On
39 on0eln0 5780 . . . . . . 7 (2𝑜 ∈ On → (∅ ∈ 2𝑜 ↔ 2𝑜 ≠ ∅))
4038, 39ax-mp 5 . . . . . 6 (∅ ∈ 2𝑜 ↔ 2𝑜 ≠ ∅)
4137, 40mpbir 221 . . . . 5 ∅ ∈ 2𝑜
4241a1i 11 . . . 4 (𝐼𝑉 → ∅ ∈ 2𝑜)
437, 12, 13, 31, 36, 42mapfien2 8314 . . 3 (𝐼𝑉 → {𝑥 ∈ ((Base‘𝑅) ↑𝑚 𝐼) ∣ 𝑥 finSupp (0g𝑅)} ≈ {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅})
4411, 43eqbrtrrd 4677 . 2 (𝐼𝑉𝐵 ≈ {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅})
4512pwfi2en 37667 . 2 (𝐼𝑉 → {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin))
46 entr 8008 . 2 ((𝐵 ≈ {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅} ∧ {𝑥 ∈ (2𝑜𝑚 𝐼) ∣ 𝑥 finSupp ∅} ≈ (𝒫 𝐼 ∩ Fin)) → 𝐵 ≈ (𝒫 𝐼 ∩ Fin))
4744, 45, 46syl2anc 693 1 (𝐼𝑉𝐵 ≈ (𝒫 𝐼 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  cin 3573  c0 3915  𝒫 cpw 4158   class class class wbr 4653  Oncon0 5723  cfv 5888  (class class class)co 6650  ωcom 7065  2𝑜c2o 7554  𝑚 cmap 7857  cen 7952  Fincfn 7955   finSupp cfsupp 8275  cn 11020  2c2 11070  0cn0 11292  #chash 13117  Basecbs 15857  0gc0g 16100  Ringcrg 18547  CRingccrg 18548  ℤ/nczn 19851   freeLMod cfrlm 20090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-hash 13118  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-dsmm 20076  df-frlm 20091
This theorem is referenced by:  isnumbasgrplem3  37675
  Copyright terms: Public domain W3C validator