![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnefalse | Structured version Visualization version GIF version |
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs vs. applying iffalse 4095 directly in this case. It happens, e.g., in oevn0 7595. (Contributed by David A. Wheeler, 15-May-2015.) |
Ref | Expression |
---|---|
ifnefalse | ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2795 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | iffalse 4095 | . 2 ⊢ (¬ 𝐴 = 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ (𝐴 ≠ 𝐵 → if(𝐴 = 𝐵, 𝐶, 𝐷) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ≠ wne 2794 ifcif 4086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-if 4087 |
This theorem is referenced by: xpima2 5578 axcc2lem 9258 xnegmnf 12041 rexneg 12042 xaddpnf1 12057 xaddpnf2 12058 xaddmnf1 12059 xaddmnf2 12060 mnfaddpnf 12062 rexadd 12063 fztpval 12402 sadcp1 15177 smupp1 15202 pcval 15549 ramtcl 15714 ramub1lem1 15730 xpscfv 16222 xpsfrnel 16223 gexlem2 17997 frgpuptinv 18184 frgpup3lem 18190 gsummpt1n0 18364 dprdfid 18416 dpjrid 18461 abvtrivd 18840 mplsubrg 19440 znf1o 19900 znhash 19907 znunithash 19913 mamulid 20247 mamurid 20248 dmatid 20301 dmatmulcl 20306 scmatdmat 20321 mdetdiagid 20406 chpdmatlem2 20644 chpscmat 20647 chpidmat 20652 xkoccn 21422 iccpnfhmeo 22744 xrhmeo 22745 ioorinv2 23343 mbfi1fseqlem4 23485 ellimc2 23641 dvcobr 23709 ply1remlem 23922 dvtaylp 24124 0cxp 24412 lgsval3 25040 lgsdinn0 25070 dchrisumlem1 25178 dchrvmasumiflem1 25190 rpvmasum2 25201 dchrvmasumlem 25212 padicabv 25319 indispconn 31216 fnejoin1 32363 ptrecube 33409 poimirlem16 33425 poimirlem17 33426 poimirlem19 33428 poimirlem20 33429 fdc 33541 cdlemk40f 36207 sdrgacs 37771 blenn0 42367 |
Copyright terms: Public domain | W3C validator |