MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znf1o Structured version   Visualization version   GIF version

Theorem znf1o 19900
Description: The function 𝐹 enumerates all equivalence classes in ℤ/n for each 𝑛. When 𝑛 = 0, ℤ / 0ℤ = ℤ / {0} ≈ ℤ so we let 𝑊 = ℤ; otherwise 𝑊 = {0, ..., 𝑛 − 1} enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y 𝑌 = (ℤ/nℤ‘𝑁)
znf1o.b 𝐵 = (Base‘𝑌)
znf1o.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znf1o.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
Assertion
Ref Expression
znf1o (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)

Proof of Theorem znf1o
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 19893 . . . . . 6 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
3 crngring 18558 . . . . . 6 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
4 eqid 2622 . . . . . . 7 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
54zrhrhm 19860 . . . . . 6 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
6 zringbas 19824 . . . . . . 7 ℤ = (Base‘ℤring)
7 znf1o.b . . . . . . 7 𝐵 = (Base‘𝑌)
86, 7rhmf 18726 . . . . . 6 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶𝐵)
92, 3, 5, 84syl 19 . . . . 5 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ⟶𝐵)
10 znf1o.w . . . . . 6 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
11 sseq1 3626 . . . . . . 7 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
12 sseq1 3626 . . . . . . 7 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
13 ssid 3624 . . . . . . 7 ℤ ⊆ ℤ
14 elfzoelz 12470 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
1514ssriv 3607 . . . . . . 7 (0..^𝑁) ⊆ ℤ
1611, 12, 13, 15keephyp 4152 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
1710, 16eqsstri 3635 . . . . 5 𝑊 ⊆ ℤ
18 fssres 6070 . . . . 5 (((ℤRHom‘𝑌):ℤ⟶𝐵𝑊 ⊆ ℤ) → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
199, 17, 18sylancl 694 . . . 4 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
20 znf1o.f . . . . 5 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
2120feq1i 6036 . . . 4 (𝐹:𝑊𝐵 ↔ ((ℤRHom‘𝑌) ↾ 𝑊):𝑊𝐵)
2219, 21sylibr 224 . . 3 (𝑁 ∈ ℕ0𝐹:𝑊𝐵)
2320fveq1i 6192 . . . . . . . 8 (𝐹𝑥) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥)
24 fvres 6207 . . . . . . . . 9 (𝑥𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2524ad2antrl 764 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2623, 25syl5eq 2668 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2720fveq1i 6192 . . . . . . . 8 (𝐹𝑦) = (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦)
28 fvres 6207 . . . . . . . . 9 (𝑦𝑊 → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
2928ad2antll 765 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌) ↾ 𝑊)‘𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3027, 29syl5eq 2668 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
3126, 30eqeq12d 2637 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦)))
32 simpl 473 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ0)
33 simprl 794 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
3417, 33sseldi 3601 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
35 simprr 796 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
3617, 35sseldi 3601 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
371, 4zndvds 19898 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
3832, 34, 36, 37syl3anc 1326 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (((ℤRHom‘𝑌)‘𝑥) = ((ℤRHom‘𝑌)‘𝑦) ↔ 𝑁 ∥ (𝑥𝑦)))
39 elnn0 11294 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
40 simpl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℕ)
41 simprl 794 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥𝑊)
4217, 41sseldi 3601 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
43 simprr 796 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦𝑊)
4417, 43sseldi 3601 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
45 moddvds 14991 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4640, 42, 44, 45syl3anc 1326 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑁 ∥ (𝑥𝑦)))
4742zred 11482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℝ)
48 nnrp 11842 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4948adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 ∈ ℝ+)
50 nnne0 11053 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
51 ifnefalse 4098 . . . . . . . . . . . . . . . 16 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
5310, 52syl5eq 2668 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑊 = (0..^𝑁))
5453adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑊 = (0..^𝑁))
5541, 54eleqtrd 2703 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ (0..^𝑁))
56 elfzole1 12478 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 0 ≤ 𝑥)
5755, 56syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑥)
58 elfzolt2 12479 . . . . . . . . . . . 12 (𝑥 ∈ (0..^𝑁) → 𝑥 < 𝑁)
5955, 58syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 < 𝑁)
60 modid 12695 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥 < 𝑁)) → (𝑥 mod 𝑁) = 𝑥)
6147, 49, 57, 59, 60syl22anc 1327 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑥 mod 𝑁) = 𝑥)
6244zred 11482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℝ)
6343, 54eleqtrd 2703 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ (0..^𝑁))
64 elfzole1 12478 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 0 ≤ 𝑦)
6563, 64syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 0 ≤ 𝑦)
66 elfzolt2 12479 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → 𝑦 < 𝑁)
6763, 66syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 < 𝑁)
68 modid 12695 . . . . . . . . . . 11 (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦)
6962, 49, 65, 67, 68syl22anc 1327 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑦 mod 𝑁) = 𝑦)
7061, 69eqeq12d 2637 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥 mod 𝑁) = (𝑦 mod 𝑁) ↔ 𝑥 = 𝑦))
7146, 70bitr3d 270 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
72 simpl 473 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑁 = 0)
7372breq1d 4663 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
74 id 22 . . . . . . . . . . . . 13 (𝑁 = 0 → 𝑁 = 0)
75 0nn0 11307 . . . . . . . . . . . . 13 0 ∈ ℕ0
7674, 75syl6eqel 2709 . . . . . . . . . . . 12 (𝑁 = 0 → 𝑁 ∈ ℕ0)
7776, 34sylan 488 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℤ)
7876, 36sylan 488 . . . . . . . . . . 11 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℤ)
7977, 78zsubcld 11487 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥𝑦) ∈ ℤ)
80 0dvds 15002 . . . . . . . . . 10 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8179, 80syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
8277zcnd 11483 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑥 ∈ ℂ)
8378zcnd 11483 . . . . . . . . . 10 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → 𝑦 ∈ ℂ)
8482, 83subeq0ad 10402 . . . . . . . . 9 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
8573, 81, 843bitrd 294 . . . . . . . 8 ((𝑁 = 0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8671, 85jaoian 824 . . . . . . 7 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8739, 86sylanb 489 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → (𝑁 ∥ (𝑥𝑦) ↔ 𝑥 = 𝑦))
8831, 38, 873bitrd 294 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
8988biimpd 219 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑊𝑦𝑊)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
9089ralrimivva 2971 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
91 dff13 6512 . . 3 (𝐹:𝑊1-1𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝑊𝑦𝑊 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
9222, 90, 91sylanbrc 698 . 2 (𝑁 ∈ ℕ0𝐹:𝑊1-1𝐵)
93 zmodfzo 12693 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9493ancoms 469 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ (0..^𝑁))
9553adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑊 = (0..^𝑁))
9694, 95eleqtrrd 2704 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ 𝑊)
97 zre 11381 . . . . . . . . . . . . . 14 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
98 modabs2 12704 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
9997, 48, 98syl2anr 495 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁))
100 simpl 473 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ)
10115, 94sseldi 3601 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (𝑧 mod 𝑁) ∈ ℤ)
102 simpr 477 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
103 moddvds 14991 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
104100, 101, 102, 103syl3anc 1326 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((𝑧 mod 𝑁) mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
10599, 104mpbid 222 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧))
106 nnnn0 11299 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
107106adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → 𝑁 ∈ ℕ0)
1081, 4zndvds 19898 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑧 mod 𝑁) ∈ ℤ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
109107, 101, 102, 108syl3anc 1326 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧) ↔ 𝑁 ∥ ((𝑧 mod 𝑁) − 𝑧)))
110105, 109mpbird 247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)) = ((ℤRHom‘𝑌)‘𝑧))
111110eqcomd 2628 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
112 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = (𝑧 mod 𝑁) → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁)))
113112eqeq2d 2632 . . . . . . . . . . 11 (𝑦 = (𝑧 mod 𝑁) → (((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))))
114113rspcev 3309 . . . . . . . . . 10 (((𝑧 mod 𝑁) ∈ 𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘(𝑧 mod 𝑁))) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
11596, 111, 114syl2anc 693 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
116 iftrue 4092 . . . . . . . . . . . . 13 (𝑁 = 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = ℤ)
117116eleq2d 2687 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)) ↔ 𝑧 ∈ ℤ))
118117biimpar 502 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ if(𝑁 = 0, ℤ, (0..^𝑁)))
119118, 10syl6eleqr 2712 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → 𝑧𝑊)
120 eqidd 2623 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧))
121 fveq2 6191 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((ℤRHom‘𝑌)‘𝑦) = ((ℤRHom‘𝑌)‘𝑧))
122121eqeq2d 2632 . . . . . . . . . . 11 (𝑦 = 𝑧 → (((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)))
123122rspcev 3309 . . . . . . . . . 10 ((𝑧𝑊 ∧ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑧)) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
124119, 120, 123syl2anc 693 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
125115, 124jaoian 824 . . . . . . . 8 (((𝑁 ∈ ℕ ∨ 𝑁 = 0) ∧ 𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12639, 125sylanb 489 . . . . . . 7 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
12727, 28syl5eq 2668 . . . . . . . . 9 (𝑦𝑊 → (𝐹𝑦) = ((ℤRHom‘𝑌)‘𝑦))
128127eqeq2d 2632 . . . . . . . 8 (𝑦𝑊 → (((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦)))
129128rexbiia 3040 . . . . . . 7 (∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = ((ℤRHom‘𝑌)‘𝑦))
130126, 129sylibr 224 . . . . . 6 ((𝑁 ∈ ℕ0𝑧 ∈ ℤ) → ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
131130ralrimiva 2966 . . . . 5 (𝑁 ∈ ℕ0 → ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦))
1321, 7, 4znzrhfo 19896 . . . . . 6 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto𝐵)
133 fofn 6117 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → (ℤRHom‘𝑌) Fn ℤ)
134 eqeq1 2626 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (𝑥 = (𝐹𝑦) ↔ ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
135134rexbidv 3052 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑧) → (∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
136135ralrn 6362 . . . . . 6 ((ℤRHom‘𝑌) Fn ℤ → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
137132, 133, 1363syl 18 . . . . 5 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑧 ∈ ℤ ∃𝑦𝑊 ((ℤRHom‘𝑌)‘𝑧) = (𝐹𝑦)))
138131, 137mpbird 247 . . . 4 (𝑁 ∈ ℕ0 → ∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦))
139 forn 6118 . . . . . 6 ((ℤRHom‘𝑌):ℤ–onto𝐵 → ran (ℤRHom‘𝑌) = 𝐵)
140132, 139syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ran (ℤRHom‘𝑌) = 𝐵)
141140raleqdv 3144 . . . 4 (𝑁 ∈ ℕ0 → (∀𝑥 ∈ ran (ℤRHom‘𝑌)∃𝑦𝑊 𝑥 = (𝐹𝑦) ↔ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
142138, 141mpbid 222 . . 3 (𝑁 ∈ ℕ0 → ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦))
143 dffo3 6374 . . 3 (𝐹:𝑊onto𝐵 ↔ (𝐹:𝑊𝐵 ∧ ∀𝑥𝐵𝑦𝑊 𝑥 = (𝐹𝑦)))
14422, 142, 143sylanbrc 698 . 2 (𝑁 ∈ ℕ0𝐹:𝑊onto𝐵)
145 df-f1o 5895 . 2 (𝐹:𝑊1-1-onto𝐵 ↔ (𝐹:𝑊1-1𝐵𝐹:𝑊onto𝐵))
14692, 144, 145sylanbrc 698 1 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  ifcif 4086   class class class wbr 4653  ran crn 5115  cres 5116   Fn wfn 5883  wf 5884  1-1wf1 5885  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  +crp 11832  ..^cfzo 12465   mod cmo 12668  cdvds 14983  Basecbs 15857  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  ringzring 19818  ℤRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  zzngim  19901  znleval  19903  zntoslem  19905  znhash  19907  znunithash  19913  dchrisumlem1  25178
  Copyright terms: Public domain W3C validator