Proof of Theorem poimirlem16
| Step | Hyp | Ref
| Expression |
| 1 | | poimirlem22.2 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 2 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
| 3 | 2 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
| 4 | 3 | ifbid 4108 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
| 5 | 4 | csbeq1d 3540 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 6 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (1st ‘𝑡) = (1st ‘𝑇)) |
| 7 | 6 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
| 8 | 6 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
| 9 | 8 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
| 10 | 9 | xpeq1d 5138 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
| 11 | 8 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
| 12 | 11 | xpeq1d 5138 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 13 | 10, 12 | uneq12d 3768 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 14 | 7, 13 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 15 | 14 | csbeq2dv 3992 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 16 | 5, 15 | eqtrd 2656 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 17 | 16 | mpteq2dv 4745 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 18 | 17 | eqeq2d 2632 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 19 | | poimirlem22.s |
. . . . 5
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
| 20 | 18, 19 | elrab2 3366 |
. . . 4
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 21 | 20 | simprbi 480 |
. . 3
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 22 | 1, 21 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 23 | | elrabi 3359 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 24 | 23, 19 | eleq2s 2719 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 25 | 1, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 26 | | xp1st 7198 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 28 | | xp1st 7198 |
. . . . . . . . 9
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 30 | | elmapfn 7880 |
. . . . . . . 8
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 33 | | 1ex 10035 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 34 | | fnconstg 6093 |
. . . . . . . . . 10
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) |
| 36 | | c0ex 10034 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 37 | | fnconstg 6093 |
. . . . . . . . . 10
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) |
| 39 | 35, 38 | pm3.2i 471 |
. . . . . . . 8
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 40 | | xp2nd 7199 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 41 | 27, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 42 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
| 43 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 44 | 42, 43 | elab 3350 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 45 | 41, 44 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 46 | | dff1o3 6143 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
| 47 | 46 | simprbi 480 |
. . . . . . . . . . 11
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 48 | 45, 47 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 49 | | imain 5974 |
. . . . . . . . . 10
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 51 | | elfznn0 12433 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
| 52 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ) |
| 54 | 53 | nnred 11035 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ) |
| 55 | 54 | ltp1d 10954 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1)) |
| 56 | | fzdisj 12368 |
. . . . . . . . . . . 12
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 58 | 57 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
| 59 | | ima0 5481 |
. . . . . . . . . 10
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
| 60 | 58, 59 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 61 | 50, 60 | sylan9req 2677 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 62 | | fnun 5997 |
. . . . . . . 8
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 63 | 39, 61, 62 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 64 | | imaundi 5545 |
. . . . . . . . 9
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 65 | | nnuz 11723 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
| 66 | 53, 65 | syl6eleq 2711 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 67 | | peano2uz 11741 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
| 69 | 68 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
| 70 | | poimir.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 71 | 70 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 72 | | npcan1 10455 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 74 | 73 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 75 | | elfzuz3 12339 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
| 76 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 78 | 77 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 79 | 74, 78 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
| 80 | | fzsplit2 12366 |
. . . . . . . . . . . 12
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 81 | 69, 79, 80 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 82 | 81 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...(𝑦 + 1)) ∪
(((𝑦 + 1) + 1)...𝑁)))) |
| 83 | | f1ofo 6144 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
| 84 | | foima 6120 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 85 | 45, 83, 84 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 86 | 85 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 87 | 82, 86 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 88 | 64, 87 | syl5eqr 2670 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 89 | 88 | fneq2d 5982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
| 90 | 63, 89 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 91 | | ovexd 6680 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
| 92 | | inidm 3822 |
. . . . . 6
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 93 | | eqidd 2623 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘𝑛)) |
| 94 | | eqidd 2623 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 95 | 32, 90, 91, 91, 92, 93, 94 | offval 6904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
| 96 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) → (1 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 97 | 96 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) →
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 98 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) → (0 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 99 | 98 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) →
((((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 100 | | 1p0e1 11133 |
. . . . . . . . . . . . . 14
⊢ (1 + 0) =
1 |
| 101 | 100 | eqcomi 2631 |
. . . . . . . . . . . . 13
⊢ 1 = (1 +
0) |
| 102 | | f1ofn 6138 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 103 | 45, 102 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 104 | 103 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 105 | | fzss2 12381 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
| 106 | 79, 105 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
| 107 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑦 + 1))) |
| 108 | 66, 107 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1))) |
| 109 | 108 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1))) |
| 110 | | fnfvima 6496 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
| 111 | 104, 106,
109, 110 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) |
| 112 | | fvun1 6269 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 113 | 35, 38, 112 | mp3an12 1414 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 114 | 61, 111, 113 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 115 | 33 | fvconst2 6469 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
| 116 | 111, 115 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
| 117 | 114, 116 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = 1) |
| 118 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ∈ (1...(𝑁 − 1))) |
| 119 | 70 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 120 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 121 | 119, 120 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 122 | | 1z 11407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
ℤ |
| 123 | 121, 122 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
| 124 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
| 125 | 124, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 126 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑛 ∈
(1...(𝑁 − 1)) ↔
(𝑛 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
| 127 | 123, 125,
126 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 ∈ (1...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
| 128 | 118, 127 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
| 129 | 73 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 130 | 129 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 131 | 128, 130 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑛 + 1) ∈ ((1 + 1)...𝑁)) |
| 132 | 131 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁)) |
| 133 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → 𝑦 ∈ ((1 + 1)...𝑁)) |
| 134 | | peano2z 11418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
| 135 | 122, 134 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 + 1)
∈ ℤ |
| 136 | 119, 135 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
| 137 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℤ) |
| 138 | 137, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 139 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑦
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 140 | 136, 138,
139 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 ∈ ((1 + 1)...𝑁) ↔ (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 141 | 133, 140 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
| 142 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 1 ∈
ℂ |
| 143 | 142, 142 | pncan3oi 10297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((1 + 1)
− 1) = 1 |
| 144 | 143 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
| 145 | 141, 144 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → (𝑦 − 1) ∈ (1...(𝑁 − 1))) |
| 146 | 137 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → 𝑦 ∈ ℂ) |
| 147 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℕ) |
| 148 | 147 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ∈ ℂ) |
| 149 | | subadd2 10285 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑦 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑛 ∈
ℂ) → ((𝑦 −
1) = 𝑛 ↔ (𝑛 + 1) = 𝑦)) |
| 150 | 142, 149 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑦 − 1) = 𝑛 ↔ (𝑛 + 1) = 𝑦)) |
| 151 | 150 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑛 + 1) = 𝑦 ↔ (𝑦 − 1) = 𝑛)) |
| 152 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑛 + 1) = 𝑦 ↔ 𝑦 = (𝑛 + 1)) |
| 153 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 − 1) = 𝑛 ↔ 𝑛 = (𝑦 − 1)) |
| 154 | 151, 152,
153 | 3bitr3g 302 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
| 155 | 146, 148,
154 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ((1 + 1)...𝑁) ∧ 𝑛 ∈ (1...(𝑁 − 1))) → (𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
| 156 | 155 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ((1 + 1)...𝑁) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
| 157 | 156 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) |
| 158 | | reu6i 3397 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑛 ∈ (1...(𝑁 − 1))(𝑦 = (𝑛 + 1) ↔ 𝑛 = (𝑦 − 1))) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
| 159 | 145, 157,
158 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ ((1 + 1)...𝑁)) → ∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
| 160 | 159 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1)) |
| 161 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) |
| 162 | 161 | f1ompt 6382 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ↔
(∀𝑛 ∈
(1...(𝑁 − 1))(𝑛 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑦 ∈ ((1 + 1)...𝑁)∃!𝑛 ∈ (1...(𝑁 − 1))𝑦 = (𝑛 + 1))) |
| 163 | 132, 160,
162 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁)) |
| 164 | | f1osng 6177 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ ∧ 1 ∈
V) → {〈𝑁,
1〉}:{𝑁}–1-1-onto→{1}) |
| 165 | 70, 33, 164 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1}) |
| 166 | 70 | nnred 11035 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 167 | 166 | ltm1d 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
| 168 | 121 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 169 | 168, 166 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
| 170 | 167, 169 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
| 171 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 172 | 170, 171 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
| 173 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
| 174 | 172, 173 | sylibr 224 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
| 175 | | 1re 10039 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 1 ∈
ℝ |
| 176 | 175 | ltp1i 10927 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 1 < (1
+ 1) |
| 177 | 175, 175 | readdcli 10053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 + 1)
∈ ℝ |
| 178 | 175, 177 | ltnlei 10158 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
| 179 | 176, 178 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ¬ (1
+ 1) ≤ 1 |
| 180 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
| 181 | 179, 180 | mto 188 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
| 182 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
| 183 | 181, 182 | mpbir 221 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
| 184 | | f1oun 6156 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ∧ {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1})
∧ (((1...(𝑁 − 1))
∩ {𝑁}) = ∅ ∧
(((1 + 1)...𝑁) ∩ {1}) =
∅)) → ((𝑛 ∈
(1...(𝑁 − 1)) ↦
(𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
| 185 | 183, 184 | mpanr2 720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)):(1...(𝑁 − 1))–1-1-onto→((1 +
1)...𝑁) ∧ {〈𝑁, 1〉}:{𝑁}–1-1-onto→{1})
∧ ((1...(𝑁 − 1))
∩ {𝑁}) = ∅)
→ ((𝑛 ∈
(1...(𝑁 − 1)) ↦
(𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
| 186 | 163, 165,
174, 185 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1})) |
| 187 | | ssv 3625 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ℕ
⊆ V |
| 188 | 187, 70 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ V) |
| 189 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 1 ∈
V) |
| 190 | 70, 65 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 191 | 73, 190 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
| 192 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 193 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 194 | 121, 192,
193 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 195 | 73, 194 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 196 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 197 | 191, 195,
196 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 198 | 73 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
| 199 | | fzsn 12383 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 200 | 119, 199 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
| 201 | 198, 200 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
| 202 | 201 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 203 | 197, 202 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
| 204 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1) |
| 205 | 204 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑛 = 𝑁) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = 1) |
| 206 | 188, 189,
203, 205 | fmptapd 6437 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {〈𝑁, 1〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
| 207 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1)))) |
| 208 | 207 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))) |
| 209 | 172, 208 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...(𝑁 − 1)))) |
| 210 | 209 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) → 𝑛 ≠ 𝑁)) |
| 211 | 210 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → 𝑛 ≠ 𝑁) |
| 212 | | ifnefalse 4098 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ≠ 𝑁 → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
| 213 | 211, 212 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
| 214 | 213 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 215 | 214 | uneq1d 3766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑛 ∈ (1...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ∪ {〈𝑁, 1〉}) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉})) |
| 216 | 206, 215 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉})) |
| 217 | 197, 202 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 218 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
ℤ → 1 ∈ (ℤ≥‘1)) |
| 219 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1 ∈
(ℤ≥‘1) → (1 + 1) ∈
(ℤ≥‘1)) |
| 220 | 122, 218,
219 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 + 1)
∈ (ℤ≥‘1) |
| 221 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((1 + 1)
∈ (ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘1))
→ (1...𝑁) = ((1...1)
∪ ((1 + 1)...𝑁))) |
| 222 | 220, 190,
221 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = ((1...1) ∪ ((1 + 1)...𝑁))) |
| 223 | | fzsn 12383 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 224 | 122, 223 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (1...1) =
{1} |
| 225 | 224 | uneq1i 3763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((1...1)
∪ ((1 + 1)...𝑁)) = ({1}
∪ ((1 + 1)...𝑁)) |
| 226 | 225 | equncomi 3759 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1...1)
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
| 227 | 222, 226 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1})) |
| 228 | 216, 217,
227 | f1oeq123d 6133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((𝑛 ∈ (1...(𝑁 − 1)) ↦ (𝑛 + 1)) ∪ {〈𝑁, 1〉}):((1...(𝑁 − 1)) ∪ {𝑁})–1-1-onto→(((1
+ 1)...𝑁) ∪
{1}))) |
| 229 | 186, 228 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 230 | | f1oco 6159 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 231 | 45, 229, 230 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 232 | | dff1o3 6143 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))))) |
| 233 | 232 | simprbi 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))) |
| 234 | 231, 233 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))))) |
| 235 | | imain 5974 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) |
| 236 | 234, 235 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) |
| 237 | 51 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
| 238 | 237 | ltp1d 10954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
| 239 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 240 | 238, 239 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 241 | 240 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ∅)) |
| 242 | | ima0 5481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ∅) =
∅ |
| 243 | 241, 242 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
| 244 | 236, 243 | sylan9req 2677 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅) |
| 245 | | imassrn 5477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
| 246 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)⟶(1...𝑁)) |
| 247 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)⟶(1...𝑁) → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ⊆ (1...𝑁)) |
| 248 | 229, 246,
247 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ⊆ (1...𝑁)) |
| 249 | 245, 248 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁)) |
| 250 | 249 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁)) |
| 251 | | elfz1end 12371 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
| 252 | 70, 251 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
| 253 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
| 254 | 204, 253,
33 | fvmpt 6282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ (1...𝑁) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
| 255 | 252, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
| 256 | 255 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) = 1) |
| 257 | | f1ofn 6138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
| 258 | 229, 257 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
| 259 | 258 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁)) |
| 260 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 261 | 66, 260 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 262 | 261 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 263 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 264 | 79, 263 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 265 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
| 266 | 259, 262,
264, 265 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
| 267 | 256, 266 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
| 268 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)) ⊆ (1...𝑁) ∧ 1 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)))) |
| 269 | 104, 250,
267, 268 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁)))) |
| 270 | | imaco 5640 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...𝑁))) |
| 271 | 269, 270 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
| 272 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))) |
| 273 | 33, 272 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) |
| 274 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
| 275 | 36, 274 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) |
| 276 | | fvun2 6270 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) ∧ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 277 | 273, 275,
276 | mp3an12 1414 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 278 | 244, 271,
277 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1))) |
| 279 | 36 | fvconst2 6469 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇))‘1) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
| 280 | 271, 279 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
| 281 | 278, 280 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = 0) |
| 282 | 281 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1 +
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) = (1 + 0)) |
| 283 | 101, 117,
282 | 3eqtr4a 2682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)))) |
| 284 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) |
| 285 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))) |
| 286 | 285 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)))) |
| 287 | 284, 286 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘1) → ((((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) ↔ (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1)) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘1))))) |
| 288 | 283, 287 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = ((2nd ‘(1st
‘𝑇))‘1) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 289 | 288 | imp 445 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 290 | 289 | adantlr 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (1 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 291 | | eldifsn 4317 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ↔ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘1))) |
| 292 | | df-ne 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ ((2nd
‘(1st ‘𝑇))‘1) ↔ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) |
| 293 | 292 | anbi2i 730 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘1)) ↔
(𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1))) |
| 294 | 291, 293 | bitri 264 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1))) |
| 295 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
| 296 | 33, 295 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) |
| 297 | 296, 38 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 298 | | imain 5974 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 299 | 48, 298 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 300 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 301 | 55, 300 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 302 | 301 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
| 303 | 302, 59 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 304 | 299, 303 | sylan9req 2677 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 305 | | fnun 5997 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∧ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∩ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 306 | 297, 304,
305 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 307 | | imaundi 5545 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 308 | | fzpred 12389 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 309 | 190, 308 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 310 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
| 311 | 309, 310 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1...𝑁) = (((1 + 1)...𝑁) ∪ {1})) |
| 312 | 311 | difeq1d 3727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {1}) = ((((1 + 1)...𝑁) ∪ {1}) ∖
{1})) |
| 313 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((1 +
1)...𝑁) ∪ {1}) ∖
{1}) = (((1 + 1)...𝑁)
∖ {1}) |
| 314 | | disj3 4021 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ((1 + 1)...𝑁) = (((1 + 1)...𝑁) ∖ {1})) |
| 315 | 183, 314 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 +
1)...𝑁) = (((1 + 1)...𝑁) ∖ {1}) |
| 316 | 313, 315 | eqtr4i 2647 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((1 +
1)...𝑁) ∪ {1}) ∖
{1}) = ((1 + 1)...𝑁) |
| 317 | 312, 316 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝑁) ∖ {1}) = ((1 + 1)...𝑁)) |
| 318 | 317 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {1}) = ((1 + 1)...𝑁)) |
| 319 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 320 | 66, 319 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 321 | 320 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 322 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘(1 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → ((1 + 1)...𝑁) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 323 | 321, 79, 322 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1 + 1)...𝑁) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 324 | 318, 323 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {1}) = (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 325 | 324 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))) |
| 326 | | imadif 5973 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1}))) |
| 327 | 48, 326 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1}))) |
| 328 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
| 329 | 190, 328 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
| 330 | | fnsnfv 6258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ 1 ∈ (1...𝑁)) → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ {1})) |
| 331 | 103, 329,
330 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ {1})) |
| 332 | 331 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {1}) = {((2nd
‘(1st ‘𝑇))‘1)}) |
| 333 | 85, 332 | difeq12d 3729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 334 | 327, 333 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 335 | 334 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {1})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 336 | 325, 335 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (((1 + 1)...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 337 | 307, 336 | syl5eqr 2670 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 338 | 337 | fneq2d 5982 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) |
| 339 | 306, 338 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 340 | | incom 3805 |
. . . . . . . . . . . . . . . 16
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ({((2nd
‘(1st ‘𝑇))‘1)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 341 | | disjdif 4040 |
. . . . . . . . . . . . . . . 16
⊢
({((2nd ‘(1st ‘𝑇))‘1)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) = ∅ |
| 342 | 340, 341 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ |
| 343 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ({((2nd ‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)}) |
| 344 | 33, 343 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} |
| 345 | | fvun1 6269 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 346 | 344, 345 | mp3an2 1412 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 347 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ({((2nd ‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)}) |
| 348 | 36, 347 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} |
| 349 | | fvun1 6269 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}) Fn
{((2nd ‘(1st ‘𝑇))‘1)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 350 | 348, 349 | mp3an2 1412 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 351 | 346, 350 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∩ {((2nd
‘(1st ‘𝑇))‘1)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}))) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 352 | 342, 351 | mpanr1 719 |
. . . . . . . . . . . . . 14
⊢
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 353 | 339, 352 | sylan 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘1)})) → ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 354 | 294, 353 | sylan2br 493 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)))
→ ((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 355 | 354 | anassrs 680 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
((((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 356 | | fzpred 12389 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
| 357 | 66, 356 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
| 358 | 357 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
| 359 | 358 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
| 360 | 331 | uneq1d 3766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) = (((2nd
‘(1st ‘𝑇)) “ {1}) ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))))) |
| 361 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
| 362 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1)))) = (((2nd
‘(1st ‘𝑇)) “ {1}) ∪ ((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1)))) |
| 363 | 360, 361,
362 | 3eqtr4g 2681 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
| 364 | 363 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) = ((2nd
‘(1st ‘𝑇)) “ ({1} ∪ ((1 + 1)...(𝑦 + 1))))) |
| 365 | 359, 364 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)})) |
| 366 | 365 | xpeq1d 5138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) × {1})) |
| 367 | | xpundir 5172 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) ∪ {((2nd
‘(1st ‘𝑇))‘1)}) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) |
| 368 | 366, 367 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))) |
| 369 | 368 | uneq1d 3766 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 370 | | un23 3772 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1})) |
| 371 | 369, 370 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))) |
| 372 | 371 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛)) |
| 373 | 372 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {1}))‘𝑛)) |
| 374 | | imaco 5640 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦))) |
| 375 | | df-ima 5127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) |
| 376 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 377 | 75, 376 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 378 | 377 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 379 | 74, 378 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
| 380 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘𝑦) → (1...𝑦) ⊆ (1...𝑁)) |
| 381 | 379, 380 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) ⊆ (1...𝑁)) |
| 382 | 381 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = (𝑛 ∈ (1...𝑦) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
| 383 | 172 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
| 384 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
| 385 | 75, 384 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
| 386 | 385 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) ⊆ (1...(𝑁 − 1))) |
| 387 | 386 | sseld 3602 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 ∈ (1...𝑦) → 𝑁 ∈ (1...(𝑁 − 1)))) |
| 388 | 383, 387 | mtod 189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑁 ∈ (1...𝑦)) |
| 389 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑁 → (𝑛 ∈ (1...𝑦) ↔ 𝑁 ∈ (1...𝑦))) |
| 390 | 389 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ (1...𝑦) ↔ ¬ 𝑁 ∈ (1...𝑦))) |
| 391 | 388, 390 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = 𝑁 → ¬ 𝑛 ∈ (1...𝑦))) |
| 392 | 391 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑦) → 𝑛 ≠ 𝑁)) |
| 393 | 392 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ≠ 𝑁) |
| 394 | 393, 212 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑦)) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
| 395 | 394 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑦) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
| 396 | 382, 395 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
| 397 | 396 | rneqd 5353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ (1...𝑦)) = ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
| 398 | 375, 397 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1))) |
| 399 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑗 ∈ V |
| 400 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) = (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) |
| 401 | 400 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1))) |
| 402 | 399, 401 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
| 403 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
| 404 | 403 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℤ) |
| 405 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → 𝑛 ∈ (1...𝑦)) |
| 406 | 122 | jctl 564 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ → (1 ∈
ℤ ∧ 𝑦 ∈
ℤ)) |
| 407 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ (1...𝑦) → 𝑛 ∈ ℤ) |
| 408 | 407, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (1...𝑦) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 409 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ 𝑦
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (1...𝑦) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
| 410 | 406, 408,
409 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑛 ∈ (1...𝑦) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
| 411 | 405, 410 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1))) |
| 412 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 = (𝑛 + 1) → (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) ↔ (𝑛 + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
| 413 | 411, 412 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ (1...𝑦)) → (𝑗 = (𝑛 + 1) → 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 414 | 413 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) → 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 415 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑗 ∈ ℤ) |
| 416 | 415 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑗 ∈ ℂ) |
| 417 | | npcan1 10455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ℂ → ((𝑗 − 1) + 1) = 𝑗) |
| 418 | 416, 417 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
| 419 | 418 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → (((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 + 1)) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 420 | 419 | ibir 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
| 421 | 420 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ((𝑗 − 1) + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
| 422 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
| 423 | 415, 422 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → (𝑗 − 1) ∈
ℤ) |
| 424 | 423, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ((𝑗 − 1) ∈ ℤ ∧
1 ∈ ℤ)) |
| 425 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((1
∈ ℤ ∧ 𝑦
∈ ℤ) ∧ ((𝑗
− 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 − 1) ∈ (1...𝑦) ↔ ((𝑗 − 1) + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
| 426 | 406, 424,
425 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ((𝑗 − 1) ∈ (1...𝑦) ↔ ((𝑗 − 1) + 1) ∈ ((1 + 1)...(𝑦 + 1)))) |
| 427 | 421, 426 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑗 − 1) ∈ (1...𝑦)) |
| 428 | 416 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑗 ∈
ℂ) |
| 429 | 417 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ℂ → 𝑗 = ((𝑗 − 1) + 1)) |
| 430 | 428, 429 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑗 = ((𝑗 − 1) + 1)) |
| 431 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = (𝑗 − 1) → (𝑛 + 1) = ((𝑗 − 1) + 1)) |
| 432 | 431 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 = (𝑗 − 1) → (𝑗 = (𝑛 + 1) ↔ 𝑗 = ((𝑗 − 1) + 1))) |
| 433 | 432 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑗 − 1) ∈ (1...𝑦) ∧ 𝑗 = ((𝑗 − 1) + 1)) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
| 434 | 427, 430,
433 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ ((1 + 1)...(𝑦 + 1))) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1)) |
| 435 | 434 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ ((1 + 1)...(𝑦 + 1)) → ∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1))) |
| 436 | 414, 435 | impbid 202 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 437 | 404, 436 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (1...𝑦)𝑗 = (𝑛 + 1) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 438 | 402, 437 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) ↔ 𝑗 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 439 | 438 | eqrdv 2620 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran (𝑛 ∈ (1...𝑦) ↦ (𝑛 + 1)) = ((1 + 1)...(𝑦 + 1))) |
| 440 | 398, 439 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦)) = ((1 + 1)...(𝑦 + 1))) |
| 441 | 440 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ (1...𝑦))) = ((2nd ‘(1st
‘𝑇)) “ ((1 +
1)...(𝑦 +
1)))) |
| 442 | 374, 441 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((1 +
1)...(𝑦 +
1)))) |
| 443 | 442 | xpeq1d 5138 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1})) |
| 444 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 445 | | imaco 5640 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
| 446 | | imaco 5640 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 447 | 445, 446 | uneq12i 3765 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ {𝑁}) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 448 | 444, 447 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 449 | 195 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 450 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 451 | 78, 449, 450 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 452 | 201 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 453 | 452 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 454 | 451, 453 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 455 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁}) = ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1))) |
| 456 | 454, 455 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
| 457 | 456 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ({𝑁} ∪ ((𝑦 + 1)...(𝑁 − 1))))) |
| 458 | 255 | sneqd 4189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = {1}) |
| 459 | | fnsnfv 6258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
| 460 | 258, 252,
459 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))‘𝑁)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
| 461 | 458, 460 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {1} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) |
| 462 | 461 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {1}) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
| 463 | 331, 462 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
| 464 | 463 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘1)} = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁}))) |
| 465 | | df-ima 5127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) |
| 466 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
| 467 | 66, 466 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
| 468 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈
(ℤ≥‘(𝑁 − 1)) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 469 | 195, 468 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 470 | 467, 469 | sylan9ssr 3617 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...(𝑁 − 1)) ⊆ (1...𝑁)) |
| 471 | 470 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
| 472 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 473 | 170, 472 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → ¬ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1))) |
| 474 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = 𝑁 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
| 475 | 474 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = 𝑁 → (¬ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
| 476 | 473, 475 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝑛 = 𝑁 → ¬ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)))) |
| 477 | 476 | con2d 129 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → ¬ 𝑛 = 𝑁)) |
| 478 | 477 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → ¬ 𝑛 = 𝑁) |
| 479 | 478 | iffalsed 4097 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → if(𝑛 = 𝑁, 1, (𝑛 + 1)) = (𝑛 + 1)) |
| 480 | 479 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 481 | 480 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 482 | 471, 481 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 483 | 482 | rneqd 5353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) ↾ ((𝑦 + 1)...(𝑁 − 1))) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 484 | 465, 483 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 485 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 ∈ ℤ) |
| 486 | 485 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 ∈ ℂ) |
| 487 | 486, 417 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) + 1) = 𝑗) |
| 488 | 487 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → (((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 489 | 488 | ibir 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
| 490 | 489 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
| 491 | 53 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ) |
| 492 | 121, 491 | anim12ci 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) ∈ ℤ ∧ (𝑁 − 1) ∈
ℤ)) |
| 493 | 485, 422 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → (𝑗 − 1) ∈ ℤ) |
| 494 | 493, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ((𝑗 − 1) ∈ ℤ ∧
1 ∈ ℤ)) |
| 495 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑦 + 1) ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ) ∧ ((𝑗 −
1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 496 | 492, 494,
495 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ ((𝑗 − 1) + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 497 | 490, 496 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → (𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1))) |
| 498 | 486, 429 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → 𝑗 = ((𝑗 − 1) + 1)) |
| 499 | 498 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → 𝑗 = ((𝑗 − 1) + 1)) |
| 500 | 432 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑗 − 1) ∈ ((𝑦 + 1)...(𝑁 − 1)) ∧ 𝑗 = ((𝑗 − 1) + 1)) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
| 501 | 497, 499,
500 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
| 502 | 501 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) → ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
| 503 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) |
| 504 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → 𝑛 ∈ ℤ) |
| 505 | 504, 122 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 506 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑦 + 1) ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ) ∧ (𝑛 ∈
ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 507 | 492, 505,
506 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 508 | 503, 507 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1))) |
| 509 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 = (𝑛 + 1) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ (𝑛 + 1) ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 510 | 508, 509 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))) → (𝑗 = (𝑛 + 1) → 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 511 | 510 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1) → 𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)))) |
| 512 | 502, 511 | impbid 202 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
| 513 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) = (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) |
| 514 | 513 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1))) |
| 515 | 399, 514 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)) ↔ ∃𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1))𝑗 = (𝑛 + 1)) |
| 516 | 512, 515 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) ↔ 𝑗 ∈ ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1)))) |
| 517 | 516 | eqrdv 2620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = ran (𝑛 ∈ ((𝑦 + 1)...(𝑁 − 1)) ↦ (𝑛 + 1))) |
| 518 | 73 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = (((𝑦 + 1) + 1)...𝑁)) |
| 519 | 518 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...((𝑁 − 1) + 1)) = (((𝑦 + 1) + 1)...𝑁)) |
| 520 | 484, 517,
519 | 3eqtr2rd 2663 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...𝑁) = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 521 | 520 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 522 | 464, 521 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ {𝑁})) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) “ ((𝑦 + 1)...(𝑁 − 1)))))) |
| 523 | 448, 457,
522 | 3eqtr4a 2682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) = ({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 524 | 523 | xpeq1d 5138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) × {0})) |
| 525 | | xpundir 5172 |
. . . . . . . . . . . . . . . 16
⊢
(({((2nd ‘(1st ‘𝑇))‘1)} ∪ ((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
| 526 | 524, 525 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) = (({((2nd
‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 527 | 443, 526 | uneq12d 3768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 528 | | unass 3770 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 529 | | un23 3772 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) |
| 530 | 528, 529 | eqtr3i 2646 |
. . . . . . . . . . . . . 14
⊢
((((2nd ‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪
(({((2nd ‘(1st ‘𝑇))‘1)} × {0}) ∪
(((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0})) |
| 531 | 527, 530 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))) |
| 532 | 531 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 533 | 532 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ ((1 + 1)...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) ∪ ({((2nd
‘(1st ‘𝑇))‘1)} × {0}))‘𝑛)) |
| 534 | 355, 373,
533 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 535 | | snssi 4339 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℂ → {1} ⊆ ℂ) |
| 536 | 142, 535 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {1}
⊆ ℂ |
| 537 | | 0cn 10032 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℂ |
| 538 | | snssi 4339 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 539 | 537, 538 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ {0}
⊆ ℂ |
| 540 | 536, 539 | unssi 3788 |
. . . . . . . . . . . . 13
⊢ ({1}
∪ {0}) ⊆ ℂ |
| 541 | 33 | fconst 6091 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} |
| 542 | 36 | fconst 6091 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0} |
| 543 | 541, 542 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0}) |
| 544 | | fun 6066 |
. . . . . . . . . . . . . . . 16
⊢
(((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦))⟶{1} ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))⟶{0}) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = ∅) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0})) |
| 545 | 543, 244,
544 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0})) |
| 546 | | imaundi 5545 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) |
| 547 | 66 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 548 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 549 | 547, 379,
548 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 550 | 549 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
| 551 | | f1ofo 6144 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁)) |
| 552 | | foima 6120 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))):(1...𝑁)–onto→(1...𝑁) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 553 | 231, 551,
552 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 554 | 553 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 555 | 550, 554 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 556 | 546, 555 | syl5eqr 2670 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 557 | 556 | feq2d 6031 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)))⟶({1} ∪ {0}) ↔
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
| 558 | 545, 557 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
| 559 | 558 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ ({1} ∪ {0})) |
| 560 | 540, 559 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ ℂ) |
| 561 | 560 | addid2d 10237 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 562 | 561 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(0 + ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 563 | 534, 562 | eqtr4d 2659 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘1)) →
(((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (0 + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 564 | 97, 99, 290, 563 | ifbothda 4123 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 565 | 564 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 566 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 567 | 29, 566 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 568 | 567 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
| 569 | | elfzonn0 12512 |
. . . . . . . . . . 11
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 570 | 568, 569 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 571 | 570 | nn0cnd 11353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
| 572 | 571 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
| 573 | 142, 537 | keepel 4155 |
. . . . . . . . 9
⊢ if(𝑛 = ((2nd
‘(1st ‘𝑇))‘1), 1, 0) ∈
ℂ |
| 574 | 573 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
∈ ℂ) |
| 575 | 572, 574,
560 | addassd 10062 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0)
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 576 | 565, 575 | eqtr4d 2659 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 577 | 576 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 578 | 95, 577 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 579 | | poimirlem18.4 |
. . . . . . . . . 10
⊢ (𝜑 → (2nd
‘𝑇) =
0) |
| 580 | 579 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) =
0) |
| 581 | | elfzle1 12344 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 0 ≤ 𝑦) |
| 582 | 581 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 0 ≤ 𝑦) |
| 583 | 580, 582 | eqbrtrd 4675 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) ≤ 𝑦) |
| 584 | | 0re 10040 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 585 | 579, 584 | syl6eqel 2709 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝑇) ∈
ℝ) |
| 586 | | lenlt 10116 |
. . . . . . . . 9
⊢
(((2nd ‘𝑇) ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((2nd
‘𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd ‘𝑇))) |
| 587 | 585, 237,
586 | syl2an 494 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘𝑇) ≤ 𝑦 ↔ ¬ 𝑦 < (2nd ‘𝑇))) |
| 588 | 583, 587 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ¬ 𝑦 < (2nd
‘𝑇)) |
| 589 | 588 | iffalsed 4097 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = (𝑦 + 1)) |
| 590 | 589 | csbeq1d 3540 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋(𝑦 + 1) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 591 | | ovex 6678 |
. . . . . 6
⊢ (𝑦 + 1) ∈ V |
| 592 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → (1...𝑗) = (1...(𝑦 + 1))) |
| 593 | 592 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...(𝑦 +
1)))) |
| 594 | 593 | xpeq1d 5138 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1})) |
| 595 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑦 + 1) → (𝑗 + 1) = ((𝑦 + 1) + 1)) |
| 596 | 595 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑦 + 1) → ((𝑗 + 1)...𝑁) = (((𝑦 + 1) + 1)...𝑁)) |
| 597 | 596 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (𝑗 = (𝑦 + 1) → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁))) |
| 598 | 597 | xpeq1d 5138 |
. . . . . . . 8
⊢ (𝑗 = (𝑦 + 1) → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
| 599 | 594, 598 | uneq12d 3768 |
. . . . . . 7
⊢ (𝑗 = (𝑦 + 1) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 600 | 599 | oveq2d 6666 |
. . . . . 6
⊢ (𝑗 = (𝑦 + 1) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 601 | 591, 600 | csbie 3559 |
. . . . 5
⊢
⦋(𝑦 +
1) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) |
| 602 | 590, 601 | syl6eq 2672 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...(𝑦 + 1))) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) |
| 603 | | ovexd 6680 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
∈ V) |
| 604 | | fvexd 6203 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ∈ V) |
| 605 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0)))) |
| 606 | | ffn 6045 |
. . . . . . 7
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}) →
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 607 | 558, 606 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 608 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(2nd ‘(1st
‘𝑇)) |
| 609 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1))) |
| 610 | 608, 609 | nfco 5287 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) |
| 611 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(1...𝑦) |
| 612 | 610, 611 | nfima 5474 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) |
| 613 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛{1} |
| 614 | 612, 613 | nfxp 5142 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) |
| 615 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((𝑦 + 1)...𝑁) |
| 616 | 610, 615 | nfima 5474 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) |
| 617 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛{0} |
| 618 | 616, 617 | nfxp 5142 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}) |
| 619 | 614, 618 | nfun 3769 |
. . . . . . 7
⊢
Ⅎ𝑛(((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) |
| 620 | 619 | dffn5f 6252 |
. . . . . 6
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁) ↔ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 621 | 607, 620 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 622 | 91, 603, 604, 605, 621 | offval2 6914 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1, 0))
+ ((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 623 | 578, 602,
622 | 3eqtr4rd 2667 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 624 | 623 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 625 | 22, 624 | eqtr4d 2659 |
1
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + if(𝑛 = ((2nd ‘(1st
‘𝑇))‘1), 1,
0))) ∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 𝑁, 1, (𝑛 + 1)))) “ ((𝑦 + 1)...𝑁)) × {0}))))) |