Proof of Theorem poimirlem19
| Step | Hyp | Ref
| Expression |
| 1 | | poimirlem22.2 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| 2 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
| 3 | 2 | breq2d 4665 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
| 4 | 3 | ifbid 4108 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
| 5 | 4 | csbeq1d 3540 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 6 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (1st ‘𝑡) = (1st ‘𝑇)) |
| 7 | 6 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
| 8 | 6 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
| 9 | 8 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
| 10 | 9 | xpeq1d 5138 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
| 11 | 8 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
| 12 | 11 | xpeq1d 5138 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
| 13 | 10, 12 | uneq12d 3768 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
| 14 | 7, 13 | oveq12d 6668 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 15 | 14 | csbeq2dv 3992 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 16 | 5, 15 | eqtrd 2656 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 17 | 16 | mpteq2dv 4745 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 18 | 17 | eqeq2d 2632 |
. . . . 5
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 19 | | poimirlem22.s |
. . . . 5
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
| 20 | 18, 19 | elrab2 3366 |
. . . 4
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
| 21 | 20 | simprbi 480 |
. . 3
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 22 | 1, 21 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 23 | | elrabi 3359 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘𝑓 +
((((2nd ‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 24 | 23, 19 | eleq2s 2719 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 25 | 1, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
| 26 | | xp1st 7198 |
. . . . . . . . . 10
⊢ (𝑇 ∈ ((((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚
(1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
| 28 | | xp1st 7198 |
. . . . . . . . 9
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁))) |
| 30 | | elmapfn 7880 |
. . . . . . . 8
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1st
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 33 | | 1ex 10035 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 34 | | fnconstg 6093 |
. . . . . . . . . 10
⊢ (1 ∈
V → (((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦))) |
| 35 | 33, 34 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) |
| 36 | | c0ex 10034 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 37 | | fnconstg 6093 |
. . . . . . . . . 10
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . 9
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) |
| 39 | 35, 38 | pm3.2i 471 |
. . . . . . . 8
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 40 | | xp2nd 7199 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 41 | 27, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
| 42 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
| 43 | | f1oeq1 6127 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 44 | 42, 43 | elab 3350 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 45 | 41, 44 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 46 | | dff1o3 6143 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡(2nd ‘(1st
‘𝑇)))) |
| 47 | 46 | simprbi 480 |
. . . . . . . . . . 11
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 48 | 45, 47 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → Fun ◡(2nd ‘(1st
‘𝑇))) |
| 49 | | imain 5974 |
. . . . . . . . . 10
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 51 | | elfznn0 12433 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℕ0) |
| 52 | 51 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℝ) |
| 53 | 52 | ltp1d 10954 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 < (𝑦 + 1)) |
| 54 | | fzdisj 12368 |
. . . . . . . . . . . 12
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...𝑁)) = ∅) |
| 56 | 55 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
| 57 | | ima0 5481 |
. . . . . . . . . 10
⊢
((2nd ‘(1st ‘𝑇)) “ ∅) =
∅ |
| 58 | 56, 57 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...𝑁))) = ∅) |
| 59 | 50, 58 | sylan9req 2677 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) |
| 60 | | fnun 5997 |
. . . . . . . 8
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 61 | 39, 59, 60 | sylancr 695 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) |
| 62 | | imaundi 5545 |
. . . . . . . . 9
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 63 | | nn0p1nn 11332 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ) |
| 64 | 51, 63 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℕ) |
| 65 | | nnuz 11723 |
. . . . . . . . . . . . . 14
⊢ ℕ =
(ℤ≥‘1) |
| 66 | 64, 65 | syl6eleq 2711 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 67 | 66 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑦 + 1) ∈
(ℤ≥‘1)) |
| 68 | | poimir.0 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 69 | 68 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 70 | | npcan1 10455 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
| 73 | | elfzuz3 12339 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
| 74 | | peano2uz 11741 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 76 | 75 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘𝑦)) |
| 77 | 72, 76 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝑦)) |
| 78 | | fzsplit2 12366 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘𝑦)) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 79 | 67, 77, 78 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) |
| 80 | 79 | imaeq2d 5466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = ((2nd ‘(1st
‘𝑇)) “
((1...𝑦) ∪ ((𝑦 + 1)...𝑁)))) |
| 81 | | f1ofo 6144 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁)) |
| 82 | | foima 6120 |
. . . . . . . . . . . 12
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 83 | 45, 81, 82 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 84 | 83 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) = (1...𝑁)) |
| 85 | 80, 84 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 86 | 62, 85 | syl5eqr 2670 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = (1...𝑁)) |
| 87 | 86 | fneq2d 5982 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁))) |
| 88 | 61, 87 | mpbid 222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 89 | | ovexd 6680 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) ∈ V) |
| 90 | | inidm 3822 |
. . . . . 6
⊢
((1...𝑁) ∩
(1...𝑁)) = (1...𝑁) |
| 91 | | eqidd 2623 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) = ((1st ‘(1st
‘𝑇))‘𝑛)) |
| 92 | | eqidd 2623 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 93 | 32, 88, 89, 89, 90, 91, 92 | offval 6904 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)))) |
| 94 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 95 | 29, 94 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
| 96 | 95 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾)) |
| 97 | | elfzonn0 12512 |
. . . . . . . . . . 11
⊢
(((1st ‘(1st ‘𝑇))‘𝑛) ∈ (0..^𝐾) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈
ℕ0) |
| 99 | 98 | nn0cnd 11353 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
| 100 | 99 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((1st
‘(1st ‘𝑇))‘𝑛) ∈ ℂ) |
| 101 | | ax-1cn 9994 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 102 | | 0cn 10032 |
. . . . . . . . . 10
⊢ 0 ∈
ℂ |
| 103 | 101, 102 | keepel 4155 |
. . . . . . . . 9
⊢ if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) ∈ ℂ |
| 104 | 103 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0) ∈
ℂ) |
| 105 | | snssi 4339 |
. . . . . . . . . . 11
⊢ (1 ∈
ℂ → {1} ⊆ ℂ) |
| 106 | 101, 105 | ax-mp 5 |
. . . . . . . . . 10
⊢ {1}
⊆ ℂ |
| 107 | | snssi 4339 |
. . . . . . . . . . 11
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 108 | 102, 107 | ax-mp 5 |
. . . . . . . . . 10
⊢ {0}
⊆ ℂ |
| 109 | 106, 108 | unssi 3788 |
. . . . . . . . 9
⊢ ({1}
∪ {0}) ⊆ ℂ |
| 110 | 33 | fconst 6091 |
. . . . . . . . . . . . 13
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 +
1)))⟶{1} |
| 111 | 36 | fconst 6091 |
. . . . . . . . . . . . 13
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0} |
| 112 | 110, 111 | pm3.2i 471 |
. . . . . . . . . . . 12
⊢
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))⟶{1} ∧
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0}) |
| 113 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → 𝑛 ∈ ((1 + 1)...𝑁)) |
| 114 | 68 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 115 | | 1z 11407 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℤ |
| 116 | | peano2z 11418 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
ℤ → (1 + 1) ∈ ℤ) |
| 117 | 115, 116 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 + 1)
∈ ℤ |
| 118 | 114, 117 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1 + 1) ∈ ℤ
∧ 𝑁 ∈
ℤ)) |
| 119 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℤ) |
| 120 | 119, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 121 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((1 +
1) ∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 122 | 118, 120,
121 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 ∈ ((1 + 1)...𝑁) ↔ (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1)))) |
| 123 | 113, 122 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (((1 + 1) −
1)...(𝑁 −
1))) |
| 124 | 101, 101 | pncan3oi 10297 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1 + 1)
− 1) = 1 |
| 125 | 124 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((1 + 1)
− 1)...(𝑁 − 1))
= (1...(𝑁 −
1)) |
| 126 | 123, 125 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑛 − 1) ∈ (1...(𝑁 − 1))) |
| 127 | 126 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1))) |
| 128 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → 𝑦 ∈ (1...(𝑁 − 1))) |
| 129 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈
ℤ) |
| 130 | 114, 129 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 131 | 130, 115 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (1 ∈ ℤ ∧
(𝑁 − 1) ∈
ℤ)) |
| 132 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
| 133 | 132, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → (𝑦 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 134 | | fzaddel 12375 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((1
∈ ℤ ∧ (𝑁
− 1) ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑦 ∈
(1...(𝑁 − 1)) ↔
(𝑦 + 1) ∈ ((1 +
1)...((𝑁 − 1) +
1)))) |
| 135 | 131, 133,
134 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 ∈ (1...(𝑁 − 1)) ↔ (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1)))) |
| 136 | 128, 135 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...((𝑁 − 1) + 1))) |
| 137 | 71 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 138 | 137 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ((1 + 1)...((𝑁 − 1) + 1)) = ((1 +
1)...𝑁)) |
| 139 | 136, 138 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → (𝑦 + 1) ∈ ((1 + 1)...𝑁)) |
| 140 | 119 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ∈ ℂ) |
| 141 | 132 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → 𝑦 ∈ ℂ) |
| 142 | | subadd2 10285 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝑦 ∈
ℂ) → ((𝑛 −
1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
| 143 | 101, 142 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑛 − 1) = 𝑦 ↔ (𝑦 + 1) = 𝑛)) |
| 144 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = (𝑛 − 1) ↔ (𝑛 − 1) = 𝑦) |
| 145 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = (𝑦 + 1) ↔ (𝑦 + 1) = 𝑛) |
| 146 | 143, 144,
145 | 3bitr4g 303 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 147 | 140, 141,
146 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ (1...(𝑁 − 1)) ∧ 𝑛 ∈ ((1 + 1)...𝑁)) → (𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 148 | 147 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (1...(𝑁 − 1)) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 149 | 148 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) |
| 150 | | reu6i 3397 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 + 1) ∈ ((1 + 1)...𝑁) ∧ ∀𝑛 ∈ ((1 + 1)...𝑁)(𝑦 = (𝑛 − 1) ↔ 𝑛 = (𝑦 + 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 151 | 139, 149,
150 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (1...(𝑁 − 1))) → ∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 152 | 151 | ralrimiva 2966 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1)) |
| 153 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
| 154 | 153 | f1ompt 6382 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ↔ (∀𝑛 ∈ ((1 + 1)...𝑁)(𝑛 − 1) ∈ (1...(𝑁 − 1)) ∧ ∀𝑦 ∈ (1...(𝑁 − 1))∃!𝑛 ∈ ((1 + 1)...𝑁)𝑦 = (𝑛 − 1))) |
| 155 | 127, 152,
154 | sylanbrc 698 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1))) |
| 156 | | f1osng 6177 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ V ∧ 𝑁 ∈
ℕ) → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
| 157 | 33, 68, 156 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) |
| 158 | 68 | nnred 11035 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 159 | 158 | ltm1d 10956 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
| 160 | 130 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
| 161 | 160, 158 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
| 162 | 159, 161 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
| 163 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
| 164 | 162, 163 | nsyl 135 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
| 165 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(1...(𝑁 −
1))) |
| 166 | 164, 165 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
| 167 | | 1re 10039 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ |
| 168 | 167 | ltp1i 10927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 < (1
+ 1) |
| 169 | 117 | zrei 11383 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1)
∈ ℝ |
| 170 | 167, 169 | ltnlei 10158 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 <
(1 + 1) ↔ ¬ (1 + 1) ≤ 1) |
| 171 | 168, 170 | mpbi 220 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ¬ (1
+ 1) ≤ 1 |
| 172 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
((1 + 1)...𝑁) → (1 +
1) ≤ 1) |
| 173 | 171, 172 | mto 188 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬ 1
∈ ((1 + 1)...𝑁) |
| 174 | | disjsn 4246 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((1 +
1)...𝑁) ∩ {1}) =
∅ ↔ ¬ 1 ∈ ((1 + 1)...𝑁)) |
| 175 | 173, 174 | mpbir 221 |
. . . . . . . . . . . . . . . . . 18
⊢ (((1 +
1)...𝑁) ∩ {1}) =
∅ |
| 176 | | f1oun 6156 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((((1 + 1)...𝑁) ∩ {1}) = ∅ ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅)) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 177 | 175, 176 | mpanr1 719 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)):((1 + 1)...𝑁)–1-1-onto→(1...(𝑁 − 1)) ∧ {〈1, 𝑁〉}:{1}–1-1-onto→{𝑁}) ∧ ((1...(𝑁 − 1)) ∩ {𝑁}) = ∅) → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 178 | 155, 157,
166, 177 | syl21anc 1325 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁})) |
| 179 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...𝑁) ↔ 1 ∈ ((1 + 1)...𝑁))) |
| 180 | 173, 179 | mtbiri 317 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...𝑁)) |
| 181 | 180 | necon2ai 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → 𝑛 ≠ 1) |
| 182 | | ifnefalse 4098 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ≠ 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 183 | 181, 182 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((1 + 1)...𝑁) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 184 | 183 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) |
| 185 | 184 | uneq1i 3763 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) |
| 186 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 ∈
V) |
| 187 | | ssv 3625 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℕ
⊆ V |
| 188 | 187, 68 | sseldi 3601 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ V) |
| 189 | 68, 65 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 190 | | fzpred 12389 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘1) → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 191 | 189, 190 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1...𝑁) = ({1} ∪ ((1 + 1)...𝑁))) |
| 192 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({1}
∪ ((1 + 1)...𝑁)) = (((1
+ 1)...𝑁) ∪
{1}) |
| 193 | 191, 192 | syl6req 2673 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((1 + 1)...𝑁) ∪ {1}) = (1...𝑁)) |
| 194 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 1 → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
| 195 | 194 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 = 1) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = 𝑁) |
| 196 | 186, 188,
193, 195 | fmptapd 6437 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 197 | 185, 196 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 198 | 71, 189 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘1)) |
| 199 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 200 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 201 | 130, 199,
200 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
| 202 | 71, 201 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
| 203 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 204 | 198, 202,
203 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 205 | 71 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
| 206 | | fzsn 12383 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
| 207 | 114, 206 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
| 208 | 205, 207 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
| 209 | 208 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 210 | 204, 209 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((1...(𝑁 − 1)) ∪ {𝑁}) = (1...𝑁)) |
| 211 | 197, 193,
210 | f1oeq123d 6133 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑛 ∈ ((1 + 1)...𝑁) ↦ (𝑛 − 1)) ∪ {〈1, 𝑁〉}):(((1 + 1)...𝑁) ∪ {1})–1-1-onto→((1...(𝑁 − 1)) ∪ {𝑁}) ↔ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁))) |
| 212 | 178, 211 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 213 | | f1oco 6159 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁)) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 214 | 45, 212, 213 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁)) |
| 215 | | dff1o3 6143 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) ↔ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁) ∧ Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))))) |
| 216 | 215 | simprbi 480 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))))) |
| 217 | | imain 5974 |
. . . . . . . . . . . . . 14
⊢ (Fun
◡((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 218 | 214, 216,
217 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))) |
| 219 | 64 | nnred 11035 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℝ) |
| 220 | 219 | ltp1d 10954 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) < ((𝑦 + 1) + 1)) |
| 221 | | fzdisj 12368 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 + 1) < ((𝑦 + 1) + 1) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 222 | 220, 221 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁)) = ∅) |
| 223 | 222 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “
∅)) |
| 224 | | ima0 5481 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ∅) =
∅ |
| 225 | 223, 224 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∩ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 226 | 218, 225 | sylan9req 2677 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) |
| 227 | | fun 6066 |
. . . . . . . . . . . 12
⊢
(((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}):(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))⟶{1} ∧
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}):(((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))⟶{0}) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0})) |
| 228 | 112, 226,
227 | sylancr 695 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0})) |
| 229 | | imaundi 5545 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
| 230 | 64 | peano2nnd 11037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℕ) |
| 231 | 230, 65 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
| 232 | 231 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1) + 1) ∈
(ℤ≥‘1)) |
| 233 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈
(ℤ≥‘𝑦) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 234 | 73, 233 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 235 | 234 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1))) |
| 236 | 72, 235 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) |
| 237 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 + 1) + 1) ∈
(ℤ≥‘1) ∧ 𝑁 ∈ (ℤ≥‘(𝑦 + 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 238 | 232, 236,
237 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑁) = ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) |
| 239 | 238 | imaeq2d 5466 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁)))) |
| 240 | | f1ofo 6144 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–1-1-onto→(1...𝑁) → ((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁)) |
| 241 | | foima 6120 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))):(1...𝑁)–onto→(1...𝑁) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 242 | 214, 240,
241 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 243 | 242 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...𝑁)) = (1...𝑁)) |
| 244 | 239, 243 | eqtr3d 2658 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1...(𝑦 + 1)) ∪ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 245 | 229, 244 | syl5eqr 2670 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = (1...𝑁)) |
| 246 | 245 | feq2d 6031 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)))⟶({1} ∪ {0}) ↔
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}))) |
| 247 | 228, 246 | mpbid 222 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0})) |
| 248 | 247 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ ({1} ∪ {0})) |
| 249 | 109, 248 | sseldi 3601 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ ℂ) |
| 250 | 100, 104,
249 | subadd23d 10414 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) = (((1st ‘(1st
‘𝑇))‘𝑛) + (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
| 251 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
| 252 | 251 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (1 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 253 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) |
| 254 | 253 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (0 =
if(𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁), 1, 0) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 255 | | 1m1e0 11089 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
| 256 | | f1ofn 6138 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 257 | 45, 256 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 258 | 257 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘(1st ‘𝑇)) Fn (1...𝑁)) |
| 259 | | imassrn 5477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) |
| 260 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)⟶(1...𝑁)) |
| 261 | 212, 260 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)⟶(1...𝑁)) |
| 262 | | frn 6053 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)⟶(1...𝑁) → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ⊆ (1...𝑁)) |
| 263 | 261, 262 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ran (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ⊆ (1...𝑁)) |
| 264 | 259, 263 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁)) |
| 265 | 264 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁)) |
| 266 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 267 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘1) → 1 ∈ (1...𝑁)) |
| 268 | 189, 267 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 1 ∈ (1...𝑁)) |
| 269 | 266, 195,
268, 68 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) = 𝑁) |
| 270 | 269 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) = 𝑁) |
| 271 | | f1ofn 6138 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))):(1...𝑁)–1-1-onto→(1...𝑁) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
| 272 | 212, 271 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
| 273 | 272 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁)) |
| 274 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
| 275 | 236, 274 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑦 + 1)) ⊆ (1...𝑁)) |
| 276 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑦 + 1))) |
| 277 | 66, 276 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈ (1...(𝑦 + 1))) |
| 278 | 277 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 1 ∈ (1...(𝑦 + 1))) |
| 279 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁) ∧ (1...(𝑦 + 1)) ⊆ (1...𝑁) ∧ 1 ∈ (1...(𝑦 + 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
| 280 | 273, 275,
278, 279 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1) ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
| 281 | 270, 280 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
| 282 | | fnfvima 6496 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))))) |
| 283 | 258, 265,
281, 282 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1))))) |
| 284 | | imaco 5640 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (1...(𝑦 + 1)))) |
| 285 | 283, 284 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
| 286 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) |
| 287 | 33, 286 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) |
| 288 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) |
| 289 | 36, 288 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) |
| 290 | | fvun1 6269 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) Fn
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∧ ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) Fn (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) ∧ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))))) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
| 291 | 287, 289,
290 | mp3an12 1414 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ∩ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1)))) →
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
| 292 | 226, 285,
291 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁))) |
| 293 | 33 | fvconst2 6469 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) →
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁)) = 1) |
| 294 | 285, 293 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1})‘((2nd ‘(1st ‘𝑇))‘𝑁)) = 1) |
| 295 | 292, 294 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 1) |
| 296 | 295 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (1 −
1)) |
| 297 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 298 | 66, 297 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 299 | 298 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) ⊆ (1...𝑁)) |
| 300 | | eluzfz2 12349 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘(𝑦 + 1)) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 301 | 236, 300 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ((𝑦 + 1)...𝑁)) |
| 302 | | fnfvima 6496 |
. . . . . . . . . . . . . . . 16
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ ((𝑦 + 1)...𝑁) ⊆ (1...𝑁) ∧ 𝑁 ∈ ((𝑦 + 1)...𝑁)) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 303 | 258, 299,
301, 302 | syl3anc 1326 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 304 | | fvun2 6270 |
. . . . . . . . . . . . . . . 16
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) Fn ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) ∧ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 305 | 35, 38, 304 | mp3an12 1414 |
. . . . . . . . . . . . . . 15
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) = ∅ ∧ ((2nd
‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 306 | 59, 303, 305 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 307 | 36 | fvconst2 6469 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘(1st ‘𝑇))‘𝑁) ∈ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 308 | 303, 307 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 309 | 306, 308 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) = 0) |
| 310 | 255, 296,
309 | 3eqtr4a 2682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 311 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 312 | 311 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1)) |
| 313 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁))) |
| 314 | 312, 313 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (𝑛 = ((2nd
‘(1st ‘𝑇))‘𝑁) → ((((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) ↔ (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘((2nd
‘(1st ‘𝑇))‘𝑁)))) |
| 315 | 310, 314 | syl5ibrcom 237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 316 | 315 | imp 445 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 317 | 316 | adantlr 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 1) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 318 | 249 | subid1d 10381 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 319 | 318 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)) |
| 320 | | eldifsn 4317 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ↔ (𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘𝑁))) |
| 321 | | df-ne 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ≠ ((2nd
‘(1st ‘𝑇))‘𝑁) ↔ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) |
| 322 | 321 | anbi2i 730 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ (1...𝑁) ∧ 𝑛 ≠ ((2nd ‘(1st
‘𝑇))‘𝑁)) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) |
| 323 | 320, 322 | bitri 264 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ↔ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) |
| 324 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → (((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 325 | 36, 324 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) |
| 326 | 35, 325 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 327 | | imain 5974 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 328 | 48, 327 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 329 | | fzdisj 12368 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 < (𝑦 + 1) → ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1))) = ∅) |
| 330 | 53, 329 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1))) = ∅) |
| 331 | 330 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = ((2nd
‘(1st ‘𝑇)) “ ∅)) |
| 332 | 331, 57 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∩ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) |
| 333 | 328, 332 | sylan9req 2677 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) |
| 334 | | fnun 5997 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) Fn ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∧ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) Fn
((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) ∧ (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∩ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ∅) →
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 335 | 326, 333,
334 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))))) |
| 336 | | imaundi 5545 |
. . . . . . . . . . . . . . . . 17
⊢
((2nd ‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 337 | 204, 209 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...𝑁) = ((1...(𝑁 − 1)) ∪ {𝑁})) |
| 338 | 337 | difeq1d 3727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (((1...(𝑁 − 1)) ∪ {𝑁}) ∖ {𝑁})) |
| 339 | | difun2 4048 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...(𝑁 −
1)) ∪ {𝑁}) ∖
{𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁}) |
| 340 | 338, 339 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = ((1...(𝑁 − 1)) ∖ {𝑁})) |
| 341 | | difsn 4328 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
𝑁 ∈ (1...(𝑁 − 1)) → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 342 | 164, 341 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ((1...(𝑁 − 1)) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 343 | 340, 342 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 344 | 343 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
| 345 | 73 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈
(ℤ≥‘𝑦)) |
| 346 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 + 1) ∈
(ℤ≥‘1) ∧ (𝑁 − 1) ∈
(ℤ≥‘𝑦)) → (1...(𝑁 − 1)) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
| 347 | 67, 345, 346 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...(𝑁 − 1)) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
| 348 | 344, 347 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1...𝑁) ∖ {𝑁}) = ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) |
| 349 | 348 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1))))) |
| 350 | | imadif 5973 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (Fun
◡(2nd ‘(1st
‘𝑇)) →
((2nd ‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
| 351 | 48, 350 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
| 352 | | elfz1end 12371 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) |
| 353 | 68, 352 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
| 354 | | fnsnfv 6258 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘(1st ‘𝑇)) Fn (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
| 355 | 257, 353,
354 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
| 356 | 355 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {𝑁}) = {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
| 357 | 83, 356 | difeq12d 3729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑁)) ∖ ((2nd
‘(1st ‘𝑇)) “ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 358 | 351, 357 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 359 | 358 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑁) ∖ {𝑁})) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 360 | 349, 359 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((1...𝑦) ∪ ((𝑦 + 1)...(𝑁 − 1)))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 361 | 336, 360 | syl5eqr 2670 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) = ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 362 | 361 | fneq2d 5982 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn
(((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) ↔ ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) |
| 363 | 335, 362 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 364 | | incom 3805 |
. . . . . . . . . . . . . . . 16
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ({((2nd
‘(1st ‘𝑇))‘𝑁)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 365 | | disjdif 4040 |
. . . . . . . . . . . . . . . 16
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} ∩ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) = ∅ |
| 366 | 364, 365 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑁) ∖
{((2nd ‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ |
| 367 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
V → ({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
| 368 | 33, 367 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} |
| 369 | | fvun1 6269 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
| 370 | 368, 369 | mp3an2 1412 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
| 371 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
V → ({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)}) |
| 372 | 36, 371 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} |
| 373 | | fvun1 6269 |
. . . . . . . . . . . . . . . . 17
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {0}) Fn {((2nd
‘(1st ‘𝑇))‘𝑁)} ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
| 374 | 372, 373 | mp3an2 1412 |
. . . . . . . . . . . . . . . 16
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}))‘𝑛)) |
| 375 | 370, 374 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ ((((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∩ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = ∅ ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 376 | 366, 375 | mpanr1 719 |
. . . . . . . . . . . . . 14
⊢
((((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) Fn ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)}) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 377 | 363, 376 | sylan 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ ((1...𝑁) ∖ {((2nd
‘(1st ‘𝑇))‘𝑁)})) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 378 | 323, 377 | sylan2br 493 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ (𝑛 ∈ (1...𝑁) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁))) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 379 | 378 | anassrs 680 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 380 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪ {1})) =
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1})) |
| 381 | | imaco 5640 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) |
| 382 | | imaco 5640 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1}) =
((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
| 383 | 381, 382 | uneq12i 3765 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ ((1 + 1)...(𝑦 + 1))) ∪ (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ {1})) =
(((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
| 384 | 380, 383 | eqtri 2644 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪ {1})) =
(((2nd ‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
| 385 | | fzpred 12389 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈
(ℤ≥‘1) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
| 386 | 66, 385 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = ({1} ∪ ((1 + 1)...(𝑦 + 1)))) |
| 387 | | uncom 3757 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({1}
∪ ((1 + 1)...(𝑦 + 1)))
= (((1 + 1)...(𝑦 + 1))
∪ {1}) |
| 388 | 386, 387 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...(𝑦 + 1)) = (((1 + 1)...(𝑦 + 1)) ∪ {1})) |
| 389 | 388 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪
{1}))) |
| 390 | 389 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((1 + 1)...(𝑦 + 1)) ∪
{1}))) |
| 391 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ∈ ℤ) |
| 392 | 124 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → ((1 + 1)
− 1) = 1) |
| 393 | | zcn 11382 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
| 394 | | pncan1 10454 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℂ → ((𝑦 + 1) − 1) = 𝑦) |
| 395 | 393, 394 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → ((𝑦 + 1) − 1) = 𝑦) |
| 396 | 392, 395 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (((1 + 1)
− 1)...((𝑦 + 1)
− 1)) = (1...𝑦)) |
| 397 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 ∈
ℤ) |
| 398 | 397 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 ∈
ℂ) |
| 399 | | pncan1 10454 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ ℂ → ((𝑗 + 1) − 1) = 𝑗) |
| 400 | 398, 399 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) − 1)
= 𝑗) |
| 401 | 400 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ (((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1)) ↔ 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
| 402 | 401 | ibir 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1))) |
| 403 | 402 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ((𝑗 + 1) − 1)
∈ (((1 + 1) − 1)...((𝑦 + 1) − 1))) |
| 404 | | peano2z 11418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ ℤ → (𝑦 + 1) ∈
ℤ) |
| 405 | 404, 117 | jctil 560 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ ℤ → ((1 + 1)
∈ ℤ ∧ (𝑦 +
1) ∈ ℤ)) |
| 406 | 397 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ (𝑗 + 1) ∈
ℤ) |
| 407 | 406, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ((𝑗 + 1) ∈
ℤ ∧ 1 ∈ ℤ)) |
| 408 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((1 +
1) ∈ ℤ ∧ (𝑦
+ 1) ∈ ℤ) ∧ ((𝑗 + 1) ∈ ℤ ∧ 1 ∈ ℤ))
→ ((𝑗 + 1) ∈ ((1
+ 1)...(𝑦 + 1)) ↔
((𝑗 + 1) − 1) ∈
(((1 + 1) − 1)...((𝑦
+ 1) − 1)))) |
| 409 | 405, 407,
408 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ((𝑗 + 1) ∈ ((1
+ 1)...(𝑦 + 1)) ↔
((𝑗 + 1) − 1) ∈
(((1 + 1) − 1)...((𝑦
+ 1) − 1)))) |
| 410 | 403, 409 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ (𝑗 + 1) ∈ ((1 +
1)...(𝑦 +
1))) |
| 411 | 400 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ 𝑗 = ((𝑗 + 1) −
1)) |
| 412 | 411 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ 𝑗 = ((𝑗 + 1) −
1)) |
| 413 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 = (𝑗 + 1) → (𝑛 − 1) = ((𝑗 + 1) − 1)) |
| 414 | 413 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑛 = (𝑗 + 1) → (𝑗 = (𝑛 − 1) ↔ 𝑗 = ((𝑗 + 1) − 1))) |
| 415 | 414 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑗 + 1) ∈ ((1 + 1)...(𝑦 + 1)) ∧ 𝑗 = ((𝑗 + 1) − 1)) → ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
| 416 | 410, 412,
415 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℤ ∧ 𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1)))
→ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
| 417 | 416 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
→ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
| 418 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) |
| 419 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑛 ∈ ℤ) |
| 420 | 419, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 421 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((((1 +
1) ∈ ℤ ∧ (𝑦
+ 1) ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 1 ∈ ℤ))
→ (𝑛 ∈ ((1 +
1)...(𝑦 + 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
| 422 | 405, 420,
421 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
| 423 | 418, 422 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1))) |
| 424 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 = (𝑛 − 1) → (𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) − 1)) ↔ (𝑛 − 1) ∈ (((1 + 1)
− 1)...((𝑦 + 1)
− 1)))) |
| 425 | 423, 424 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℤ ∧ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) → (𝑗 = (𝑛 − 1) → 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
| 426 | 425 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℤ →
(∃𝑛 ∈ ((1 +
1)...(𝑦 + 1))𝑗 = (𝑛 − 1) → 𝑗 ∈ (((1 + 1) − 1)...((𝑦 + 1) −
1)))) |
| 427 | 417, 426 | impbid 202 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
↔ ∃𝑛 ∈ ((1
+ 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
| 428 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑗 ∈ V |
| 429 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) |
| 430 | 429 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1))) |
| 431 | 428, 430 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ ((1 + 1)...(𝑦 + 1))𝑗 = (𝑛 − 1)) |
| 432 | 427, 431 | syl6bbr 278 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → (𝑗 ∈ (((1 + 1) −
1)...((𝑦 + 1) − 1))
↔ 𝑗 ∈ ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)))) |
| 433 | 432 | eqrdv 2620 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (((1 + 1)
− 1)...((𝑦 + 1)
− 1)) = ran (𝑛 ∈
((1 + 1)...(𝑦 + 1)) ↦
(𝑛 −
1))) |
| 434 | 396, 433 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℤ →
(1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 435 | 391, 434 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 436 | 435 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 437 | | df-ima 5127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) |
| 438 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
ℤ → 1 ∈ (ℤ≥‘1)) |
| 439 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (1 ∈
(ℤ≥‘1) → (1 + 1) ∈
(ℤ≥‘1)) |
| 440 | 115, 438,
439 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 + 1)
∈ (ℤ≥‘1) |
| 441 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((1 + 1)
∈ (ℤ≥‘1) → ((1 + 1)...(𝑦 + 1)) ⊆ (1...(𝑦 + 1))) |
| 442 | 440, 441 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((1 +
1)...(𝑦 + 1)) ⊆
(1...(𝑦 +
1)) |
| 443 | 442, 275 | syl5ss 3614 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1 + 1)...(𝑦 + 1)) ⊆ (1...𝑁)) |
| 444 | 443 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 445 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
((1 + 1)...(𝑦 + 1)) →
(1 + 1) ≤ 1) |
| 446 | 171, 445 | mto 188 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ¬ 1
∈ ((1 + 1)...(𝑦 +
1)) |
| 447 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 1 → (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↔ 1 ∈ ((1 + 1)...(𝑦 + 1)))) |
| 448 | 446, 447 | mtbiri 317 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 = 1 → ¬ 𝑛 ∈ ((1 + 1)...(𝑦 + 1))) |
| 449 | 448 | necon2ai 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → 𝑛 ≠ 1) |
| 450 | 449, 182 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 451 | 450 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1)) |
| 452 | 444, 451 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 453 | 452 | rneqd 5353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ ((1 + 1)...(𝑦 + 1))) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 454 | 437, 453 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))) = ran (𝑛 ∈ ((1 + 1)...(𝑦 + 1)) ↦ (𝑛 − 1))) |
| 455 | 436, 454 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (1...𝑦) = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) |
| 456 | 455 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1))))) |
| 457 | 269 | sneqd 4189 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = {𝑁}) |
| 458 | | fnsnfv 6258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) Fn (1...𝑁) ∧ 1 ∈ (1...𝑁)) → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
| 459 | 272, 268,
458 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → {((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))‘1)} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
| 460 | 457, 459 | eqtr3d 2658 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → {𝑁} = ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1})) |
| 461 | 460 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((2nd
‘(1st ‘𝑇)) “ {𝑁}) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
| 462 | 355, 461 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
| 463 | 462 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ {1}))) |
| 464 | 456, 463 | uneq12d 3768 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ ((1 + 1)...(𝑦 + 1)))) ∪ ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “
{1})))) |
| 465 | 384, 390,
464 | 3eqtr4a 2682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 466 | 465 | xpeq1d 5138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {1})) |
| 467 | | xpundir 5172 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {1}) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) |
| 468 | 466, 467 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) =
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1}))) |
| 469 | | imaco 5640 |
. . . . . . . . . . . . . . . . 17
⊢
(((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁))) |
| 470 | | df-ima 5127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) |
| 471 | | fzss1 12380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 + 1) + 1) ∈
(ℤ≥‘1) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
| 472 | 232, 471 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
| 473 | 472 | resmptd 5452 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 474 | | 1red 10055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ∈
ℝ) |
| 475 | 64 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℤ) |
| 476 | 475 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℤ) |
| 477 | 476 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((𝑦 + 1) + 1) ∈ ℝ) |
| 478 | 64 | nnge1d 11063 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 ≤ (𝑦 + 1)) |
| 479 | 474, 219,
477, 478, 220 | lelttrd 10195 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 1 < ((𝑦 + 1) + 1)) |
| 480 | 474, 477 | ltnled 10184 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (1 < ((𝑦 + 1) + 1) ↔ ¬ ((𝑦 + 1) + 1) ≤
1)) |
| 481 | 479, 480 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ ((𝑦 + 1) + 1) ≤
1) |
| 482 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (1 ∈
(((𝑦 + 1) + 1)...𝑁) → ((𝑦 + 1) + 1) ≤ 1) |
| 483 | 481, 482 | nsyl 135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ¬ 1 ∈ (((𝑦 + 1) + 1)...𝑁)) |
| 484 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 1 → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ 1 ∈ (((𝑦 + 1) + 1)...𝑁))) |
| 485 | 484 | notbid 308 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 1 → (¬ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ¬ 1 ∈ (((𝑦 + 1) + 1)...𝑁))) |
| 486 | 483, 485 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 = 1 → ¬ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁))) |
| 487 | 486 | necon2ad 2809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → 𝑛 ≠ 1)) |
| 488 | 487 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → 𝑛 ≠ 1) |
| 489 | 488, 182 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ (0...(𝑁 − 1)) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → if(𝑛 = 1, 𝑁, (𝑛 − 1)) = (𝑛 − 1)) |
| 490 | 489 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
| 491 | 490 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
| 492 | 473, 491 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
| 493 | 492 | rneqd 5353 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) ↾ (((𝑦 + 1) + 1)...𝑁)) = ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
| 494 | 470, 493 | syl5eq 2668 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1))) |
| 495 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) = (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) |
| 496 | 495 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ V → (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1))) |
| 497 | 428, 496 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
| 498 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) |
| 499 | 114, 476 | anim12ci 591 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1) + 1) ∈ ℤ ∧ 𝑁 ∈
ℤ)) |
| 500 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → 𝑛 ∈ ℤ) |
| 501 | 500, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) → (𝑛 ∈ ℤ ∧ 1 ∈
ℤ)) |
| 502 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑦 + 1) + 1)
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ (𝑛
∈ ℤ ∧ 1 ∈ ℤ)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 503 | 499, 501,
502 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 504 | 498, 503 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
| 505 | | eleq1 2689 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 = (𝑛 − 1) → (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) ↔ (𝑛 − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 506 | 504, 505 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)) → (𝑗 = (𝑛 − 1) → 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 507 | 506 | rexlimdva 3031 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1) → 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 508 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 ∈ ℤ) |
| 509 | 508 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
| 510 | 509, 399 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) − 1) = 𝑗) |
| 511 | 510 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → (((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 512 | 511 | ibir 257 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
| 513 | 512 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
| 514 | 508 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → (𝑗 + 1) ∈ ℤ) |
| 515 | 514, 115 | jctir 561 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ((𝑗 + 1) ∈ ℤ ∧ 1 ∈
ℤ)) |
| 516 | | fzsubel 12377 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑦 + 1) + 1)
∈ ℤ ∧ 𝑁
∈ ℤ) ∧ ((𝑗 +
1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 517 | 499, 515,
516 | syl2an 494 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ↔ ((𝑗 + 1) − 1) ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 518 | 513, 517 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → (𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁)) |
| 519 | 510 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → 𝑗 = ((𝑗 + 1) − 1)) |
| 520 | 519 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → 𝑗 = ((𝑗 + 1) − 1)) |
| 521 | 414 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑗 + 1) ∈ (((𝑦 + 1) + 1)...𝑁) ∧ 𝑗 = ((𝑗 + 1) − 1)) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
| 522 | 518, 520,
521 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1)) |
| 523 | 522 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) → ∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1))) |
| 524 | 507, 523 | impbid 202 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (∃𝑛 ∈ (((𝑦 + 1) + 1)...𝑁)𝑗 = (𝑛 − 1) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 525 | 497, 524 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑗 ∈ ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) ↔ 𝑗 ∈ ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)))) |
| 526 | 525 | eqrdv 2620 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ran (𝑛 ∈ (((𝑦 + 1) + 1)...𝑁) ↦ (𝑛 − 1)) = ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1))) |
| 527 | 64 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (𝑦 + 1) ∈ ℂ) |
| 528 | | pncan1 10454 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 + 1) ∈ ℂ →
(((𝑦 + 1) + 1) − 1) =
(𝑦 + 1)) |
| 529 | 527, 528 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → (((𝑦 + 1) + 1) − 1) = (𝑦 + 1)) |
| 530 | 529 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) = ((𝑦 + 1)...(𝑁 − 1))) |
| 531 | 530 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((𝑦 + 1) + 1) − 1)...(𝑁 − 1)) = ((𝑦 + 1)...(𝑁 − 1))) |
| 532 | 494, 526,
531 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁)) = ((𝑦 + 1)...(𝑁 − 1))) |
| 533 | 532 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) “ (((𝑦 + 1) + 1)...𝑁))) = ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 534 | 469, 533 | syl5eq 2668 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1)))) |
| 535 | 534 | xpeq1d 5138 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) |
| 536 | 468, 535 | uneq12d 3768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ×
{0}))) |
| 537 | | un23 3772 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ({((2nd
‘(1st ‘𝑇))‘𝑁)} × {1})) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) =
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1})) |
| 538 | 536, 537 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))) |
| 539 | 538 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛)) |
| 540 | 539 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {1}))‘𝑛)) |
| 541 | | imaundi 5545 |
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘(1st ‘𝑇)) “ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ {𝑁})) |
| 542 | | fzsplit2 12366 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑦 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 543 | 234, 202,
542 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
| 544 | 208 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 545 | 544 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((𝑦 + 1)...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 546 | 543, 545 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑦 + 1)...𝑁) = (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁})) |
| 547 | 546 | imaeq2d 5466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ (((𝑦 + 1)...(𝑁 − 1)) ∪ {𝑁}))) |
| 548 | 355 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → {((2nd
‘(1st ‘𝑇))‘𝑁)} = ((2nd ‘(1st
‘𝑇)) “ {𝑁})) |
| 549 | 548 | uneq2d 3767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ ((2nd
‘(1st ‘𝑇)) “ {𝑁}))) |
| 550 | 541, 547,
549 | 3eqtr4a 2682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)})) |
| 551 | 550 | xpeq1d 5138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {0})) |
| 552 | | xpundir 5172 |
. . . . . . . . . . . . . . . 16
⊢
((((2nd ‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) ∪ {((2nd
‘(1st ‘𝑇))‘𝑁)}) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})) |
| 553 | 551, 552 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}) = ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
| 554 | 553 | uneq2d 3767 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})))) |
| 555 | | unass 3770 |
. . . . . . . . . . . . . 14
⊢
(((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ ((((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0}) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
| 556 | 554, 555 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))) |
| 557 | 556 | fveq1d 6193 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 558 | 557 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛) = ((((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...(𝑁 − 1))) × {0})) ∪
({((2nd ‘(1st ‘𝑇))‘𝑁)} × {0}))‘𝑛)) |
| 559 | 379, 540,
558 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 560 | 319, 559 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) ∧ ¬ 𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − 0) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 561 | 252, 254,
317, 560 | ifbothda 4123 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) = (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) |
| 562 | 561 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) = (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) |
| 563 | 250, 562 | eqtr2d 2657 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛)) = ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
| 564 | 563 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) + (((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))‘𝑛))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
| 565 | 93, 564 | eqtrd 2656 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
| 566 | 52 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ∈ ℝ) |
| 567 | 160 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
| 568 | 158 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
| 569 | | elfzle2 12345 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (0...(𝑁 − 1)) → 𝑦 ≤ (𝑁 − 1)) |
| 570 | 569 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 ≤ (𝑁 − 1)) |
| 571 | 159 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
| 572 | 566, 567,
568, 570, 571 | lelttrd 10195 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < 𝑁) |
| 573 | | poimirlem21.4 |
. . . . . . . . 9
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
| 574 | 573 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (2nd
‘𝑇) = 𝑁) |
| 575 | 572, 574 | breqtrrd 4681 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → 𝑦 < (2nd ‘𝑇)) |
| 576 | 575 | iftrued 4094 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) = 𝑦) |
| 577 | 576 | csbeq1d 3540 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋𝑦 / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 578 | | vex 3203 |
. . . . . 6
⊢ 𝑦 ∈ V |
| 579 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (1...𝑗) = (1...𝑦)) |
| 580 | 579 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑦))) |
| 581 | 580 | xpeq1d 5138 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1})) |
| 582 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (𝑗 + 1) = (𝑦 + 1)) |
| 583 | 582 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → ((𝑗 + 1)...𝑁) = ((𝑦 + 1)...𝑁)) |
| 584 | 583 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (𝑗 = 𝑦 → ((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑦 + 1)...𝑁))) |
| 585 | 584 | xpeq1d 5138 |
. . . . . . . 8
⊢ (𝑗 = 𝑦 → (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})) |
| 586 | 581, 585 | uneq12d 3768 |
. . . . . . 7
⊢ (𝑗 = 𝑦 → ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
| 587 | 586 | oveq2d 6666 |
. . . . . 6
⊢ (𝑗 = 𝑦 → ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 588 | 578, 587 | csbie 3559 |
. . . . 5
⊢
⦋𝑦 /
𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0}))) |
| 589 | 577, 588 | syl6eq 2672 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑦)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑦 + 1)...𝑁)) × {0})))) |
| 590 | | ovexd 6680 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) ∈
V) |
| 591 | | fvexd 6203 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) ∧ 𝑛 ∈ (1...𝑁)) → ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛) ∈ V) |
| 592 | | eqidd 2623 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0))) = (𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))) |
| 593 | | ffn 6045 |
. . . . . . 7
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})):(1...𝑁)⟶({1} ∪ {0}) →
(((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 594 | 247, 593 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁)) |
| 595 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(2nd ‘(1st
‘𝑇)) |
| 596 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1))) |
| 597 | 595, 596 | nfco 5287 |
. . . . . . . . . 10
⊢
Ⅎ𝑛((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) |
| 598 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(1...(𝑦 + 1)) |
| 599 | 597, 598 | nfima 5474 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) |
| 600 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛{1} |
| 601 | 599, 600 | nfxp 5142 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) ×
{1}) |
| 602 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(((𝑦 + 1) + 1)...𝑁) |
| 603 | 597, 602 | nfima 5474 |
. . . . . . . . 9
⊢
Ⅎ𝑛(((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) |
| 604 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛{0} |
| 605 | 603, 604 | nfxp 5142 |
. . . . . . . 8
⊢
Ⅎ𝑛((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}) |
| 606 | 601, 605 | nfun 3769 |
. . . . . . 7
⊢
Ⅎ𝑛(((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) |
| 607 | 606 | dffn5f 6252 |
. . . . . 6
⊢
((((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) Fn (1...𝑁) ↔ (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
| 608 | 594, 607 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → (((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})) = (𝑛 ∈ (1...𝑁) ↦ ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛))) |
| 609 | 89, 590, 591, 592, 608 | offval2 6914 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = (𝑛 ∈ (1...𝑁) ↦ ((((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)) + ((((((2nd
‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))‘𝑛)))) |
| 610 | 565, 589,
609 | 3eqtr4rd 2667 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ (0...(𝑁 − 1))) → ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
| 611 | 610 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘𝑓 +
((((2nd ‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
| 612 | 22, 611 | eqtr4d 2659 |
1
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ((𝑛 ∈ (1...𝑁) ↦ (((1st
‘(1st ‘𝑇))‘𝑛) − if(𝑛 = ((2nd ‘(1st
‘𝑇))‘𝑁), 1, 0)))
∘𝑓 + (((((2nd ‘(1st
‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (1...(𝑦 + 1))) × {1}) ∪
((((2nd ‘(1st ‘𝑇)) ∘ (𝑛 ∈ (1...𝑁) ↦ if(𝑛 = 1, 𝑁, (𝑛 − 1)))) “ (((𝑦 + 1) + 1)...𝑁)) × {0}))))) |