MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpvmasum2 Structured version   Visualization version   GIF version

Theorem rpvmasum2 25201
Description: A partial result along the lines of rpvmasum 25215. The sum of the von Mangoldt function over those integers 𝑛𝐴 (mod 𝑁) is asymptotic to (1 − 𝑀)(log𝑥 / ϕ(𝑥)) + 𝑂(1), where 𝑀 is the number of non-principal Dirichlet characters with Σ𝑛 ∈ ℕ, 𝑋(𝑛) / 𝑛 = 0. Our goal is to show this set is empty. Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 5-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum2.g 𝐺 = (DChr‘𝑁)
rpvmasum2.d 𝐷 = (Base‘𝐺)
rpvmasum2.1 1 = (0g𝐺)
rpvmasum2.w 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
rpvmasum2.u 𝑈 = (Unit‘𝑍)
rpvmasum2.b (𝜑𝐴𝑈)
rpvmasum2.t 𝑇 = (𝐿 “ {𝐴})
rpvmasum2.z1 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
Assertion
Ref Expression
rpvmasum2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘𝑊))))) ∈ 𝑂(1))
Distinct variable groups:   𝑚,𝑛,𝑥,𝑦,𝑓, 1   𝐴,𝑓,𝑚,𝑥,𝑦   𝑓,𝐺   𝑓,𝑁,𝑚,𝑛,𝑥,𝑦   𝜑,𝑓,𝑚,𝑛,𝑥   𝑇,𝑚,𝑛,𝑥,𝑦   𝑈,𝑚,𝑛,𝑥   𝑓,𝑊,𝑥   𝑓,𝑍,𝑚,𝑛,𝑥,𝑦   𝐷,𝑓,𝑚,𝑛,𝑥,𝑦   𝑓,𝐿,𝑚,𝑛,𝑥,𝑦   𝐴,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝑇(𝑓)   𝑈(𝑦,𝑓)   𝐺(𝑥,𝑦,𝑚,𝑛)   𝑊(𝑦,𝑚,𝑛)

Proof of Theorem rpvmasum2
Dummy variables 𝑐 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpvmasum.a . . . . . . 7 (𝜑𝑁 ∈ ℕ)
21adantr 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 𝑁 ∈ ℕ)
3 rpvmasum2.g . . . . . . 7 𝐺 = (DChr‘𝑁)
4 rpvmasum2.d . . . . . . 7 𝐷 = (Base‘𝐺)
53, 4dchrfi 24980 . . . . . 6 (𝑁 ∈ ℕ → 𝐷 ∈ Fin)
62, 5syl 17 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ Fin)
7 fzfid 12772 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (1...(⌊‘𝑥)) ∈ Fin)
8 rpvmasum.z . . . . . . . . . . . . 13 𝑍 = (ℤ/nℤ‘𝑁)
9 eqid 2622 . . . . . . . . . . . . 13 (Base‘𝑍) = (Base‘𝑍)
10 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑓𝐷)
113, 8, 4, 9, 10dchrf 24967 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
12 rpvmasum2.u . . . . . . . . . . . . . . 15 𝑈 = (Unit‘𝑍)
139, 12unitss 18660 . . . . . . . . . . . . . 14 𝑈 ⊆ (Base‘𝑍)
14 rpvmasum2.b . . . . . . . . . . . . . 14 (𝜑𝐴𝑈)
1513, 14sseldi 3601 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ (Base‘𝑍))
1615adantr 481 . . . . . . . . . . . 12 ((𝜑𝑓𝐷) → 𝐴 ∈ (Base‘𝑍))
1711, 16ffvelrnd 6360 . . . . . . . . . . 11 ((𝜑𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
1817cjcld 13936 . . . . . . . . . 10 ((𝜑𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
1918adantlr 751 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
2019adantrl 752 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (∗‘(𝑓𝐴)) ∈ ℂ)
2111adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
2221adantlr 751 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → 𝑓:(Base‘𝑍)⟶ℂ)
231nnnn0d 11351 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ0)
24 rpvmasum.l . . . . . . . . . . . . . . . 16 𝐿 = (ℤRHom‘𝑍)
258, 9, 24znzrhfo 19896 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑍))
26 fof 6115 . . . . . . . . . . . . . . 15 (𝐿:ℤ–onto→(Base‘𝑍) → 𝐿:ℤ⟶(Base‘𝑍))
2723, 25, 263syl 18 . . . . . . . . . . . . . 14 (𝜑𝐿:ℤ⟶(Base‘𝑍))
2827adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿:ℤ⟶(Base‘𝑍))
29 elfzelz 12342 . . . . . . . . . . . . 13 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ)
30 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐿:ℤ⟶(Base‘𝑍) ∧ 𝑛 ∈ ℤ) → (𝐿𝑛) ∈ (Base‘𝑍))
3128, 29, 30syl2an 494 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝐿𝑛) ∈ (Base‘𝑍))
3231adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝐿𝑛) ∈ (Base‘𝑍))
3322, 32ffvelrnd 6360 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
3433anasss 679 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → (𝑓‘(𝐿𝑛)) ∈ ℂ)
35 elfznn 12370 . . . . . . . . . . . . . 14 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
3635adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
37 vmacl 24844 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ)
3836, 37syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈ ℝ)
3938, 36nndivred 11069 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ)
4039recnd 10068 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4140adantrr 753 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
4234, 41mulcld 10060 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
4320, 42mulcld 10060 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑓𝐷)) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
4443anass1rs 849 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
457, 44fsumcl 14464 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ ℂ)
46 relogcl 24322 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4746adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4847recnd 10068 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
4948adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (log‘𝑥) ∈ ℂ)
50 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
51 neg1cn 11124 . . . . . . . 8 -1 ∈ ℂ
52 0cn 10032 . . . . . . . 8 0 ∈ ℂ
5351, 52keepel 4155 . . . . . . 7 if(𝑓𝑊, -1, 0) ∈ ℂ
5450, 53keepel 4155 . . . . . 6 if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ
55 mulcl 10020 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
5649, 54, 55sylancl 694 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) ∈ ℂ)
576, 45, 56fsumsub 14520 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
5842anass1rs 849 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
597, 58fsumcl 14464 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
6019, 59, 56subdid 10486 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))))
617, 19, 58fsummulc2 14516 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
6254a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) ∈ ℂ)
6319, 49, 62mul12d 10245 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
64 ovif2 6738 . . . . . . . . . 10 ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)))
65 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑓 = 1 → (𝑓𝐴) = ( 1𝐴))
66 rpvmasum2.1 . . . . . . . . . . . . . . . . . 18 1 = (0g𝐺)
671ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑁 ∈ ℕ)
6814ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝐴𝑈)
693, 8, 66, 12, 67, 68dchr1 24982 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ( 1𝐴) = 1)
7065, 69sylan9eqr 2678 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑓𝐴) = 1)
7170fveq2d 6195 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = (∗‘1))
72 1re 10039 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
73 cjre 13879 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → (∗‘1) = 1)
7472, 73ax-mp 5 . . . . . . . . . . . . . . 15 (∗‘1) = 1
7571, 74syl6eq 2672 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → (∗‘(𝑓𝐴)) = 1)
7675oveq1d 6665 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = (1 · 1))
77 1t1e1 11175 . . . . . . . . . . . . 13 (1 · 1) = 1
7876, 77syl6eq 2672 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · 1) = 1)
7978ifeq1da 4116 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))))
80 df-ne 2795 . . . . . . . . . . . . 13 (𝑓1 ↔ ¬ 𝑓 = 1 )
81 ovif2 6738 . . . . . . . . . . . . . 14 ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0))
82 simplll 798 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → 𝜑)
83 rpvmasum2.z1 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑓𝑊) → 𝐴 = (1r𝑍))
8483fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
8582, 84sylan 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = (𝑓‘(1r𝑍)))
863, 8, 4dchrmhm 24966 . . . . . . . . . . . . . . . . . . . . . . . 24 𝐷 ⊆ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld))
87 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓𝐷)
8886, 87sseldi 3601 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → 𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
89 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (mulGrp‘𝑍) = (mulGrp‘𝑍)
90 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1r𝑍) = (1r𝑍)
9189, 90ringidval 18503 . . . . . . . . . . . . . . . . . . . . . . . 24 (1r𝑍) = (0g‘(mulGrp‘𝑍))
92 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . 25 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
93 cnfld1 19771 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (1r‘ℂfld)
9492, 93ringidval 18503 . . . . . . . . . . . . . . . . . . . . . . . 24 1 = (0g‘(mulGrp‘ℂfld))
9591, 94mhm0 17343 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑓‘(1r𝑍)) = 1)
9688, 95syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓‘(1r𝑍)) = 1)
9796ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓‘(1r𝑍)) = 1)
9885, 97eqtrd 2656 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (𝑓𝐴) = 1)
9998fveq2d 6195 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = (∗‘1))
10099, 74syl6eq 2672 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → (∗‘(𝑓𝐴)) = 1)
101100oveq1d 6665 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = (1 · -1))
10251mulid2i 10043 . . . . . . . . . . . . . . . . 17 (1 · -1) = -1
103101, 102syl6eq 2672 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑓𝑊) → ((∗‘(𝑓𝐴)) · -1) = -1)
104103ifeq1da 4116 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)))
10519adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → (∗‘(𝑓𝐴)) ∈ ℂ)
106105mul01d 10235 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · 0) = 0)
107106ifeq2d 4105 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, -1, ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
108104, 107eqtrd 2656 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → if(𝑓𝑊, ((∗‘(𝑓𝐴)) · -1), ((∗‘(𝑓𝐴)) · 0)) = if(𝑓𝑊, -1, 0))
10981, 108syl5eq 2668 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ 𝑓1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
11080, 109sylan2br 493 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) ∧ ¬ 𝑓 = 1 ) → ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
111110ifeq2da 4117 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , 1, ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
11279, 111eqtrd 2656 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → if(𝑓 = 1 , ((∗‘(𝑓𝐴)) · 1), ((∗‘(𝑓𝐴)) · if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
11364, 112syl5eq 2668 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))
114113oveq2d 6666 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((log‘𝑥) · ((∗‘(𝑓𝐴)) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11563, 114eqtrd 2656 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
11661, 115oveq12d 6668 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (((∗‘(𝑓𝐴)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((∗‘(𝑓𝐴)) · ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
11760, 116eqtrd 2656 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
118117sumeq2dv 14433 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = Σ𝑓𝐷𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
119 fzfid 12772 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
120 inss1 3833 . . . . . . . . 9 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
121 ssfi 8180 . . . . . . . . 9 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
122119, 120, 121sylancl 694 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1232phicld 15477 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
124123nncnd 11036 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
125120a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
126125sselda 3603 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑛 ∈ (1...(⌊‘𝑥)))
127126, 40syldan 487 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
128122, 124, 127fsummulc2 14516 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)))
129124adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (ϕ‘𝑁) ∈ ℂ)
130129, 40mulcld 10060 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
131126, 130syldan 487 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
132131ralrimiva 2966 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
133119olcd 408 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin))
134 sumss2 14457 . . . . . . . 8 (((((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)) ∧ ∀𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) ∧ ((1...(⌊‘𝑥)) ⊆ (ℤ‘1) ∨ (1...(⌊‘𝑥)) ∈ Fin)) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
135125, 132, 133, 134syl21anc 1325 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
136 elin 3796 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑛𝑇))
137136baib 944 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
138137adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ↔ 𝑛𝑇))
139 rpvmasum2.t . . . . . . . . . . . . 13 𝑇 = (𝐿 “ {𝐴})
140139eleq2i 2693 . . . . . . . . . . . 12 (𝑛𝑇𝑛 ∈ (𝐿 “ {𝐴}))
141 ffn 6045 . . . . . . . . . . . . . 14 (𝐿:ℤ⟶(Base‘𝑍) → 𝐿 Fn ℤ)
14228, 141syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → 𝐿 Fn ℤ)
143 fniniseg 6338 . . . . . . . . . . . . . 14 (𝐿 Fn ℤ → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝑛 ∈ ℤ ∧ (𝐿𝑛) = 𝐴)))
144143baibd 948 . . . . . . . . . . . . 13 ((𝐿 Fn ℤ ∧ 𝑛 ∈ ℤ) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
145142, 29, 144syl2an 494 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ (𝐿 “ {𝐴}) ↔ (𝐿𝑛) = 𝐴))
146140, 145syl5bb 272 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛𝑇 ↔ (𝐿𝑛) = 𝐴))
147138, 146bitr2d 269 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝐿𝑛) = 𝐴𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)))
14840mul02d 10234 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (0 · ((Λ‘𝑛) / 𝑛)) = 0)
149147, 148ifbieq2d 4111 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0))
150 ovif 6737 . . . . . . . . . 10 (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛)))
1511ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈ ℕ)
152151, 5syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐷 ∈ Fin)
15319adantlr 751 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
15433, 153mulcld 10060 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) ∈ ℂ)
155152, 40, 154fsummulc1 14517 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)))
15614ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐴𝑈)
1573, 4, 8, 9, 12, 151, 31, 156sum2dchr 24999 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) = if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0))
158157oveq1d 6665 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑓𝐷 ((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)))
15940adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → ((Λ‘𝑛) / 𝑛) ∈ ℂ)
160 mulass 10024 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))))
161 mul12 10202 . . . . . . . . . . . . . 14 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → ((𝑓‘(𝐿𝑛)) · ((∗‘(𝑓𝐴)) · ((Λ‘𝑛) / 𝑛))) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
162160, 161eqtrd 2656 . . . . . . . . . . . . 13 (((𝑓‘(𝐿𝑛)) ∈ ℂ ∧ (∗‘(𝑓𝐴)) ∈ ℂ ∧ ((Λ‘𝑛) / 𝑛) ∈ ℂ) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
16333, 153, 159, 162syl3anc 1326 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑓𝐷) → (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
164163sumeq2dv 14433 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑓𝐷 (((𝑓‘(𝐿𝑛)) · (∗‘(𝑓𝐴))) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
165155, 158, 1643eqtr3d 2664 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (if((𝐿𝑛) = 𝐴, (ϕ‘𝑁), 0) · ((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
166150, 165syl5eqr 2670 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if((𝐿𝑛) = 𝐴, ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), (0 · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
167149, 166eqtr3d 2658 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
168167sumeq2dv 14433 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))if(𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇), ((ϕ‘𝑁) · ((Λ‘𝑛) / 𝑛)), 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
169128, 135, 1683eqtrd 2660 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
170119, 6, 43fsumcom 14507 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
171169, 170eqtrd 2656 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) = Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))))
1723dchrabl 24979 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
173 ablgrp 18198 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
1744, 66grpidcl 17450 . . . . . . . . . 10 (𝐺 ∈ Grp → 1𝐷)
1752, 172, 173, 1744syl 19 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 1𝐷)
17648mulid1d 10057 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) = (log‘𝑥))
177176, 48eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · 1) ∈ ℂ)
178 iftrue 4092 . . . . . . . . . . 11 (𝑓 = 1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = 1)
179178oveq2d 6666 . . . . . . . . . 10 (𝑓 = 1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
180179sumsn 14475 . . . . . . . . 9 (( 1𝐷 ∧ ((log‘𝑥) · 1) ∈ ℂ) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
181175, 177, 180syl2anc 693 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · 1))
182 eldifsn 4317 . . . . . . . . . . 11 (𝑓 ∈ (𝐷 ∖ { 1 }) ↔ (𝑓𝐷𝑓1 ))
183 ifnefalse 4098 . . . . . . . . . . . . . . 15 (𝑓1 → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
184183ad2antll 765 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, -1, 0))
185 negeq 10273 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 1 → -if(𝑓𝑊, 1, 0) = -1)
186 negeq 10273 . . . . . . . . . . . . . . . 16 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = -0)
187 neg0 10327 . . . . . . . . . . . . . . . 16 -0 = 0
188186, 187syl6eq 2672 . . . . . . . . . . . . . . 15 (if(𝑓𝑊, 1, 0) = 0 → -if(𝑓𝑊, 1, 0) = 0)
189185, 188ifsb 4099 . . . . . . . . . . . . . 14 -if(𝑓𝑊, 1, 0) = if(𝑓𝑊, -1, 0)
190184, 189syl6eqr 2674 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, 1, 0))
191190oveq2d 6666 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · -if(𝑓𝑊, 1, 0)))
19248adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → (log‘𝑥) ∈ ℂ)
19350, 52keepel 4155 . . . . . . . . . . . . 13 if(𝑓𝑊, 1, 0) ∈ ℂ
194 mulneg2 10467 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
195192, 193, 194sylancl 694 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · -if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
196191, 195eqtrd 2656 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑓𝐷𝑓1 )) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
197182, 196sylan2b 492 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · if(𝑓𝑊, 1, 0)))
198197sumeq2dv 14433 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)))
199 diffi 8192 . . . . . . . . . . 11 (𝐷 ∈ Fin → (𝐷 ∖ { 1 }) ∈ Fin)
2006, 199syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝐷 ∖ { 1 }) ∈ Fin)
20148adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → (log‘𝑥) ∈ ℂ)
202 mulcl 10020 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ if(𝑓𝑊, 1, 0) ∈ ℂ) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
203201, 193, 202sylancl 694 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → ((log‘𝑥) · if(𝑓𝑊, 1, 0)) ∈ ℂ)
204200, 203fsumneg 14519 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })-((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
205193a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓 ∈ (𝐷 ∖ { 1 })) → if(𝑓𝑊, 1, 0) ∈ ℂ)
206200, 48, 205fsummulc2 14516 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)))
207 rpvmasum2.w . . . . . . . . . . . . . . . . 17 𝑊 = {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0}
208 ssrab2 3687 . . . . . . . . . . . . . . . . 17 {𝑦 ∈ (𝐷 ∖ { 1 }) ∣ Σ𝑚 ∈ ℕ ((𝑦‘(𝐿𝑚)) / 𝑚) = 0} ⊆ (𝐷 ∖ { 1 })
209207, 208eqsstri 3635 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝐷 ∖ { 1 })
210 difss 3737 . . . . . . . . . . . . . . . 16 (𝐷 ∖ { 1 }) ⊆ 𝐷
211209, 210sstri 3612 . . . . . . . . . . . . . . 15 𝑊𝐷
212 ssfi 8180 . . . . . . . . . . . . . . 15 ((𝐷 ∈ Fin ∧ 𝑊𝐷) → 𝑊 ∈ Fin)
2136, 211, 212sylancl 694 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ∈ Fin)
214 fsumconst 14522 . . . . . . . . . . . . . 14 ((𝑊 ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑓𝑊 1 = ((#‘𝑊) · 1))
215213, 50, 214sylancl 694 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = ((#‘𝑊) · 1))
216209a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑊 ⊆ (𝐷 ∖ { 1 }))
21750a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℂ)
218217ralrimivw 2967 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ∀𝑓𝑊 1 ∈ ℂ)
219200olcd 408 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin))
220 sumss2 14457 . . . . . . . . . . . . . 14 (((𝑊 ⊆ (𝐷 ∖ { 1 }) ∧ ∀𝑓𝑊 1 ∈ ℂ) ∧ ((𝐷 ∖ { 1 }) ⊆ (ℤ‘1) ∨ (𝐷 ∖ { 1 }) ∈ Fin)) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
221216, 218, 219, 220syl21anc 1325 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝑊 1 = Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0))
222 hashcl 13147 . . . . . . . . . . . . . . . 16 (𝑊 ∈ Fin → (#‘𝑊) ∈ ℕ0)
223213, 222syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → (#‘𝑊) ∈ ℕ0)
224223nn0cnd 11353 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → (#‘𝑊) ∈ ℂ)
225224mulid1d 10057 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → ((#‘𝑊) · 1) = (#‘𝑊))
226215, 221, 2253eqtr3d 2664 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0) = (#‘𝑊))
227226oveq2d 6666 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · Σ𝑓 ∈ (𝐷 ∖ { 1 })if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (#‘𝑊)))
228206, 227eqtr3d 2658 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = ((log‘𝑥) · (#‘𝑊)))
229228negeqd 10275 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → -Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓𝑊, 1, 0)) = -((log‘𝑥) · (#‘𝑊)))
230198, 204, 2293eqtrd 2660 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = -((log‘𝑥) · (#‘𝑊)))
231181, 230oveq12d 6668 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) + -((log‘𝑥) · (#‘𝑊))))
23248, 224mulcld 10060 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (#‘𝑊)) ∈ ℂ)
233177, 232negsubd 10398 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (((log‘𝑥) · 1) + -((log‘𝑥) · (#‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (#‘𝑊))))
234231, 233eqtrd 2656 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (#‘𝑊))))
235 disjdif 4040 . . . . . . . 8 ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅
236235a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∩ (𝐷 ∖ { 1 })) = ∅)
237 undif2 4044 . . . . . . . 8 ({ 1 } ∪ (𝐷 ∖ { 1 })) = ({ 1 } ∪ 𝐷)
238175snssd 4340 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → { 1 } ⊆ 𝐷)
239 ssequn1 3783 . . . . . . . . 9 ({ 1 } ⊆ 𝐷 ↔ ({ 1 } ∪ 𝐷) = 𝐷)
240238, 239sylib 208 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ({ 1 } ∪ 𝐷) = 𝐷)
241237, 240syl5req 2669 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐷 = ({ 1 } ∪ (𝐷 ∖ { 1 })))
242236, 241, 6, 56fsumsplit 14471 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = (Σ𝑓 ∈ { 1 } ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) + Σ𝑓 ∈ (𝐷 ∖ { 1 })((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24348, 217, 224subdid 10486 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (#‘𝑊))) = (((log‘𝑥) · 1) − ((log‘𝑥) · (#‘𝑊))))
244234, 242, 2433eqtr4rd 2667 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((log‘𝑥) · (1 − (#‘𝑊))) = Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))
245171, 244oveq12d 6668 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘𝑊)))) = (Σ𝑓𝐷 Σ𝑛 ∈ (1...(⌊‘𝑥))((∗‘(𝑓𝐴)) · ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛))) − Σ𝑓𝐷 ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))
24657, 118, 2453eqtr4d 2666 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘𝑊)))))
247246mpteq2dva 4744 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) = (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘𝑊))))))
248 rpssre 11843 . . . 4 + ⊆ ℝ
249248a1i 11 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
2501, 5syl 17 . . 3 (𝜑𝐷 ∈ Fin)
25117adantlr 751 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (𝑓𝐴) ∈ ℂ)
252251cjcld 13936 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (∗‘(𝑓𝐴)) ∈ ℂ)
25359, 56subcld 10392 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
254252, 253mulcld 10060 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑓𝐷) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
255254anasss 679 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ+𝑓𝐷)) → ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ ℂ)
25618adantr 481 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (∗‘(𝑓𝐴)) ∈ ℂ)
257253an32s 846 . . . 4 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) ∈ ℂ)
258 o1const 14350 . . . . 5 ((ℝ+ ⊆ ℝ ∧ (∗‘(𝑓𝐴)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
259248, 18, 258sylancr 695 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (∗‘(𝑓𝐴))) ∈ 𝑂(1))
260 fveq1 6190 . . . . . . . . . . . 12 (𝑓 = 1 → (𝑓‘(𝐿𝑛)) = ( 1 ‘(𝐿𝑛)))
261260oveq1d 6665 . . . . . . . . . . 11 (𝑓 = 1 → ((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = (( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
262261sumeq2sdv 14435 . . . . . . . . . 10 (𝑓 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)))
263262, 179oveq12d 6668 . . . . . . . . 9 (𝑓 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
264263adantl 482 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)))
26546recnd 10068 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℂ)
266265mulid1d 10057 . . . . . . . . 9 (𝑥 ∈ ℝ+ → ((log‘𝑥) · 1) = (log‘𝑥))
267266oveq2d 6666 . . . . . . . 8 (𝑥 ∈ ℝ+ → (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · 1)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
268264, 267sylan9eq 2676 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥)))
269268mpteq2dva 4744 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))))
2708, 24, 1, 3, 4, 66rpvmasumlem 25176 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
271270ad2antrr 762 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(( 1 ‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − (log‘𝑥))) ∈ 𝑂(1))
272269, 271eqeltrd 2701 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓 = 1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
273183oveq2d 6666 . . . . . . . . . 10 (𝑓1 → ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))) = ((log‘𝑥) · if(𝑓𝑊, -1, 0)))
274273oveq2d 6666 . . . . . . . . 9 (𝑓1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))))
27548adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
276 mulcom 10022 . . . . . . . . . . . . . . 15 (((log‘𝑥) ∈ ℂ ∧ -1 ∈ ℂ) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
277275, 51, 276sylancl 694 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = (-1 · (log‘𝑥)))
278275mulm1d 10482 . . . . . . . . . . . . . 14 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (-1 · (log‘𝑥)) = -(log‘𝑥))
279277, 278eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · -1) = -(log‘𝑥))
280275mul01d 10235 . . . . . . . . . . . . 13 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · 0) = 0)
281279, 280ifeq12d 4106 . . . . . . . . . . . 12 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0)) = if(𝑓𝑊, -(log‘𝑥), 0))
282 ovif2 6738 . . . . . . . . . . . 12 ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = if(𝑓𝑊, ((log‘𝑥) · -1), ((log‘𝑥) · 0))
283 negeq 10273 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = (log‘𝑥) → -if(𝑓𝑊, (log‘𝑥), 0) = -(log‘𝑥))
284 negeq 10273 . . . . . . . . . . . . . 14 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = -0)
285284, 187syl6eq 2672 . . . . . . . . . . . . 13 (if(𝑓𝑊, (log‘𝑥), 0) = 0 → -if(𝑓𝑊, (log‘𝑥), 0) = 0)
286283, 285ifsb 4099 . . . . . . . . . . . 12 -if(𝑓𝑊, (log‘𝑥), 0) = if(𝑓𝑊, -(log‘𝑥), 0)
287281, 282, 2863eqtr4g 2681 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) · if(𝑓𝑊, -1, 0)) = -if(𝑓𝑊, (log‘𝑥), 0))
288287oveq2d 6666 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)))
28959an32s 846 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ)
290 ifcl 4130 . . . . . . . . . . . 12 (((log‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
291275, 52, 290sylancl 694 . . . . . . . . . . 11 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → if(𝑓𝑊, (log‘𝑥), 0) ∈ ℂ)
292289, 291subnegd 10399 . . . . . . . . . 10 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − -if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
293288, 292eqtrd 2656 . . . . . . . . 9 (((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓𝑊, -1, 0))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
294274, 293sylan9eqr 2678 . . . . . . . 8 ((((𝜑𝑓𝐷) ∧ 𝑥 ∈ ℝ+) ∧ 𝑓1 ) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
295294an32s 846 . . . . . . 7 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)))
296295mpteq2dva 4744 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))))
2971ad2antrr 762 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑁 ∈ ℕ)
298 simplr 792 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓𝐷)
299 simpr 477 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → 𝑓1 )
300 eqid 2622 . . . . . . . 8 (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)) = (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))
3018, 24, 297, 3, 4, 66, 298, 299, 300dchrmusumlema 25182 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → ∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))
3021adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑓𝐷) → 𝑁 ∈ ℕ)
303302ad2antrr 762 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑁 ∈ ℕ)
304298adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓𝐷)
305 simplr 792 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑓1 )
306 simprl 794 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → 𝑐 ∈ (0[,)+∞))
307 simprrl 804 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡)
308 simprrr 805 . . . . . . . . . . . 12 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦))
3098, 24, 303, 3, 4, 66, 304, 305, 300, 306, 307, 308, 207dchrvmaeq0 25193 . . . . . . . . . . 11 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑓𝑊𝑡 = 0))
310 ifbi 4107 . . . . . . . . . . . . 13 ((𝑓𝑊𝑡 = 0) → if(𝑓𝑊, (log‘𝑥), 0) = if(𝑡 = 0, (log‘𝑥), 0))
311310oveq2d 6666 . . . . . . . . . . . 12 ((𝑓𝑊𝑡 = 0) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0)))
312311mpteq2dv 4745 . . . . . . . . . . 11 ((𝑓𝑊𝑡 = 0) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
313309, 312syl 17 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))))
3148, 24, 303, 3, 4, 66, 304, 305, 300, 306, 307, 308dchrvmasumif 25192 . . . . . . . . . 10 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑡 = 0, (log‘𝑥), 0))) ∈ 𝑂(1))
315313, 314eqeltrd 2701 . . . . . . . . 9 ((((𝜑𝑓𝐷) ∧ 𝑓1 ) ∧ (𝑐 ∈ (0[,)+∞) ∧ (seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)))) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
316315rexlimdvaa 3032 . . . . . . . 8 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
317316exlimdv 1861 . . . . . . 7 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (∃𝑡𝑐 ∈ (0[,)+∞)(seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎))) ⇝ 𝑡 ∧ ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , (𝑎 ∈ ℕ ↦ ((𝑓‘(𝐿𝑎)) / 𝑎)))‘(⌊‘𝑦)) − 𝑡)) ≤ (𝑐 / 𝑦)) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1)))
318301, 317mpd 15 . . . . . 6 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑓𝑊, (log‘𝑥), 0))) ∈ 𝑂(1))
319296, 318eqeltrd 2701 . . . . 5 (((𝜑𝑓𝐷) ∧ 𝑓1 ) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
320272, 319pm2.61dane 2881 . . . 4 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0))))) ∈ 𝑂(1))
321256, 257, 259, 320o1mul2 14355 . . 3 ((𝜑𝑓𝐷) → (𝑥 ∈ ℝ+ ↦ ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
322249, 250, 255, 321fsumo1 14544 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑓𝐷 ((∗‘(𝑓𝐴)) · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑓‘(𝐿𝑛)) · ((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · if(𝑓 = 1 , 1, if(𝑓𝑊, -1, 0)))))) ∈ 𝑂(1))
323247, 322eqeltrrd 2702 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑛 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑛) / 𝑛)) − ((log‘𝑥) · (1 − (#‘𝑊))))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  [,)cico 12177  ...cfz 12326  cfl 12591  seqcseq 12801  #chash 13117  ccj 13836  abscabs 13974  cli 14215  𝑂(1)co1 14217  Σcsu 14416  ϕcphi 15469  Basecbs 15857  0gc0g 16100   MndHom cmhm 17333  Grpcgrp 17422  Abelcabl 18194  mulGrpcmgp 18489  1rcur 18501  Unitcui 18639  fldccnfld 19746  ℤRHomczrh 19848  ℤ/nczn 19851  logclog 24301  Λcvma 24818  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-phi 15471  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-qus 16169  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-gim 17701  df-ga 17723  df-cntz 17750  df-oppg 17776  df-od 17948  df-gex 17949  df-pgp 17950  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-cyg 18280  df-dprd 18394  df-dpj 18395  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-0p 23437  df-limc 23630  df-dv 23631  df-ply 23944  df-idp 23945  df-coe 23946  df-dgr 23947  df-quot 24046  df-log 24303  df-cxp 24304  df-em 24719  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826  df-mu 24827  df-dchr 24958
This theorem is referenced by:  dchrisum0re  25202  rpvmasum  25215
  Copyright terms: Public domain W3C validator