MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpscfv Structured version   Visualization version   GIF version

Theorem xpscfv 16222
Description: The value of the pair function at an element of 2𝑜. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpscfv ((𝐴𝑉𝐵𝑊𝐶 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))

Proof of Theorem xpscfv
StepHypRef Expression
1 elpri 4197 . . . 4 (𝐶 ∈ {∅, 1𝑜} → (𝐶 = ∅ ∨ 𝐶 = 1𝑜))
2 df2o3 7573 . . . 4 2𝑜 = {∅, 1𝑜}
31, 2eleq2s 2719 . . 3 (𝐶 ∈ 2𝑜 → (𝐶 = ∅ ∨ 𝐶 = 1𝑜))
4 xpsc0 16220 . . . . . 6 (𝐴𝑉 → (({𝐴} +𝑐 {𝐵})‘∅) = 𝐴)
54adantr 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (({𝐴} +𝑐 {𝐵})‘∅) = 𝐴)
6 fveq2 6191 . . . . . 6 (𝐶 = ∅ → (({𝐴} +𝑐 {𝐵})‘𝐶) = (({𝐴} +𝑐 {𝐵})‘∅))
7 iftrue 4092 . . . . . 6 (𝐶 = ∅ → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴)
86, 7eqeq12d 2637 . . . . 5 (𝐶 = ∅ → ((({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵) ↔ (({𝐴} +𝑐 {𝐵})‘∅) = 𝐴))
95, 8syl5ibrcom 237 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 = ∅ → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)))
10 xpsc1 16221 . . . . . 6 (𝐵𝑊 → (({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵)
1110adantl 482 . . . . 5 ((𝐴𝑉𝐵𝑊) → (({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵)
12 fveq2 6191 . . . . . 6 (𝐶 = 1𝑜 → (({𝐴} +𝑐 {𝐵})‘𝐶) = (({𝐴} +𝑐 {𝐵})‘1𝑜))
13 1n0 7575 . . . . . . . 8 1𝑜 ≠ ∅
14 neeq1 2856 . . . . . . . 8 (𝐶 = 1𝑜 → (𝐶 ≠ ∅ ↔ 1𝑜 ≠ ∅))
1513, 14mpbiri 248 . . . . . . 7 (𝐶 = 1𝑜𝐶 ≠ ∅)
16 ifnefalse 4098 . . . . . . 7 (𝐶 ≠ ∅ → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1715, 16syl 17 . . . . . 6 (𝐶 = 1𝑜 → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1812, 17eqeq12d 2637 . . . . 5 (𝐶 = 1𝑜 → ((({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵) ↔ (({𝐴} +𝑐 {𝐵})‘1𝑜) = 𝐵))
1911, 18syl5ibrcom 237 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐶 = 1𝑜 → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)))
209, 19jaod 395 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐶 = ∅ ∨ 𝐶 = 1𝑜) → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)))
213, 20syl5 34 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ 2𝑜 → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵)))
22213impia 1261 1 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  c0 3915  ifcif 4086  {csn 4177  {cpr 4179  ccnv 5113  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  2𝑜c2o 7554   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-cda 8990
This theorem is referenced by:  xpsfrn2  16230  xpslem  16233  xpsaddlem  16235  xpsvsca  16239
  Copyright terms: Public domain W3C validator