![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inaprc | Structured version Visualization version GIF version |
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
inaprc | ⊢ Inacc ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inawina 9512 | . . . . . 6 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ Inaccw) | |
2 | winaon 9510 | . . . . . 6 ⊢ (𝑥 ∈ Inaccw → 𝑥 ∈ On) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ Inacc → 𝑥 ∈ On) |
4 | 3 | ssriv 3607 | . . . 4 ⊢ Inacc ⊆ On |
5 | ssorduni 6985 | . . . 4 ⊢ (Inacc ⊆ On → Ord ∪ Inacc) | |
6 | ordsson 6989 | . . . 4 ⊢ (Ord ∪ Inacc → ∪ Inacc ⊆ On) | |
7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ ∪ Inacc ⊆ On |
8 | vex 3203 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
9 | grothtsk 9657 | . . . . . . . 8 ⊢ ∪ Tarski = V | |
10 | 8, 9 | eleqtrri 2700 | . . . . . . 7 ⊢ 𝑦 ∈ ∪ Tarski |
11 | eluni2 4440 | . . . . . . 7 ⊢ (𝑦 ∈ ∪ Tarski ↔ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤) | |
12 | 10, 11 | mpbi 220 | . . . . . 6 ⊢ ∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
13 | ne0i 3921 | . . . . . . . . . 10 ⊢ (𝑦 ∈ 𝑤 → 𝑤 ≠ ∅) | |
14 | tskcard 9603 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅) → (card‘𝑤) ∈ Inacc) | |
15 | 13, 14 | sylan2 491 | . . . . . . . . 9 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → (card‘𝑤) ∈ Inacc) |
16 | 15 | adantl 482 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (card‘𝑤) ∈ Inacc) |
17 | tsksdom 9578 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑦 ≺ 𝑤) | |
18 | 17 | adantl 482 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ≺ 𝑤) |
19 | tskwe2 9595 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ Tarski → 𝑤 ∈ dom card) | |
20 | 19 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤) → 𝑤 ∈ dom card) |
21 | cardsdomel 8800 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ On ∧ 𝑤 ∈ dom card) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) | |
22 | 20, 21 | sylan2 491 | . . . . . . . . 9 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → (𝑦 ≺ 𝑤 ↔ 𝑦 ∈ (card‘𝑤))) |
23 | 18, 22 | mpbid 222 | . . . . . . . 8 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → 𝑦 ∈ (card‘𝑤)) |
24 | eleq2 2690 | . . . . . . . . 9 ⊢ (𝑧 = (card‘𝑤) → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ (card‘𝑤))) | |
25 | 24 | rspcev 3309 | . . . . . . . 8 ⊢ (((card‘𝑤) ∈ Inacc ∧ 𝑦 ∈ (card‘𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
26 | 16, 23, 25 | syl2anc 693 | . . . . . . 7 ⊢ ((𝑦 ∈ On ∧ (𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤)) → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
27 | 26 | rexlimdvaa 3032 | . . . . . 6 ⊢ (𝑦 ∈ On → (∃𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧)) |
28 | 12, 27 | mpi 20 | . . . . 5 ⊢ (𝑦 ∈ On → ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) |
29 | eluni2 4440 | . . . . 5 ⊢ (𝑦 ∈ ∪ Inacc ↔ ∃𝑧 ∈ Inacc 𝑦 ∈ 𝑧) | |
30 | 28, 29 | sylibr 224 | . . . 4 ⊢ (𝑦 ∈ On → 𝑦 ∈ ∪ Inacc) |
31 | 30 | ssriv 3607 | . . 3 ⊢ On ⊆ ∪ Inacc |
32 | 7, 31 | eqssi 3619 | . 2 ⊢ ∪ Inacc = On |
33 | ssonprc 6992 | . . 3 ⊢ (Inacc ⊆ On → (Inacc ∉ V ↔ ∪ Inacc = On)) | |
34 | 4, 33 | ax-mp 5 | . 2 ⊢ (Inacc ∉ V ↔ ∪ Inacc = On) |
35 | 32, 34 | mpbir 221 | 1 ⊢ Inacc ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∉ wnel 2897 ∃wrex 2913 Vcvv 3200 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 class class class wbr 4653 dom cdm 5114 Ord word 5722 Oncon0 5723 ‘cfv 5888 ≺ csdm 7954 cardccrd 8761 Inaccwcwina 9504 Inacccina 9505 Tarskictsk 9570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 ax-groth 9645 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-smo 7443 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-oi 8415 df-har 8463 df-r1 8627 df-card 8765 df-aleph 8766 df-cf 8767 df-acn 8768 df-ac 8939 df-wina 9506 df-ina 9507 df-tsk 9571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |